
Exam 3
5/3/19

There are 5 questions, each of which has several parts, as well as a bonus question. Neither the questions
nor the parts are necessarily in order from easiest to most difficult. Make sure you have taken a look at and
attempted all of the questions in the allotted time. Stop working and immediately turn in your exam when
time has been called.

Name: _________________________
Question Maximum Possible Points
1 10
2 9
3 6
4 7
5 18
Bonus 1
Total 50

The figure below shows a histogram of scores. The mean was 34.1, the median was 33, and the standard
deviation was 7.15. The rank correlations between the first and second, second and third, and first and third
exam scores scores were 0.58, 0.49, and 0.58.

Exam 3

Score (Out of 50)
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1. The Univariate State-Space Model and ARIMA

The basic linear state-space model is given by:

yt = axt + z′tγ + vt Observation Equation
xt = φxt−1 + z′tυ + wt State Equation,

where vt
i.i.d.∼ N

(
0, σ2

v

)
, wt

i.i.d.∼ N
(
0, σ2

w

)
and x1 ∼ N

(
µ, σ2

x

)
and t = 1, . . . , n.

(a) This state-space model includes an AR(1) model as a special case. How is the AR(1) model obtained?
Indicate which parameters need to be fixed, and the values they need to be fixed to. Don’t forget µ and
σ2
x!

γ = 0, υ = 0, a = 1, σ2
v = 0

Full credit was given for µ = 0 or µ = µ abd σ2
x = σ2

w

1−φ2 or σ2
x = σ2

x, since I did not specify if the AR(1)
model should be mean-zero but we generally worked with mean-zero models in class and we often interpret
σ2
x = V [xt]. I also accepted µ = x1 if σ2

x = 0.

I gave full credit if you got everything right, took off 1 point if you got almost everything right, 2 points if
there were some serious issues but you tried, and 3 points if you did nothing or very little.

(b) Set φ = 1, γ = 0 and υ = 0. Using the lag-operator notation Bxt = xt−1 solve the state equation for
xt.

xt =
(

1
1−B

)
wt

(c) Plug your expression from (b) into the observation equation, and multiply through to eliminate any lag
operators that appear as denominators. Collect all of the terms that involve yt on the left-hand side,
and put the rest on the right-hand side. Define zt to be equal to the left-hand side.

yt = a

(
1

1−B

)
wt + vt

(1−B) yt︸ ︷︷ ︸
zt

= awt + (1−B) vt

Some students got confused about the request that you define zt to be equal to the left-hand side, because
there is already a zt in the model - this was an oversight on my part. I meant for you to define a new time
series process to make (d) easier, but had forgotten we already had a zt, especially because we set γ = 0
and υ = 0 in (b). I can see why this was confusing, so I did not deduct any points if I saw that people were
trying to use the zt from the original state equation with γ 6= 0.
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(d) Derive the autocovariance function γz (h) of zt.

Because zt is a moving average process, we have:

γz (h) =

 a2σ2
w + 2σ2

v h = 0
−σ2

v |h| = 1
0 otherwise

Although I did not explicitly ask for it, I was hoping you would notice that the model from (b) corresponds
to an ARIMA(0, 1, 1) model for yt!

2. State-Space Model Smoothing

Let’s consider the a tiny example of the basic linear state-space model from the previous part, with a = 1,
|φ| < 1, µ = 0, σ2

x = σ2
w/
(
1− φ2) and n = 2. Remember that we know that the joint distribution of the time

series and the latent states is the nicely structured normal distribution,

(
y
x

)
∼ N

((
aE [x]
E [x]

)
,

(
a2V [x] + σ2

vIn aV [x]
aV [x] V [x]

))
.

(a) Write the equation for the smoothed values of the states from the notes. Simplify as much as you can
without multiplying or inverting any matrices.

E [x|y] =E [x] + aV [x]
(
a2V [x] + σ2

vIn
)−1 (y − aE [x])

=
(

0
0

)
+
(

1 φ
φ 1

)((
1 φ
φ 1

)
+
σ2
v

(
1− φ2)
σ2
w

(
1 0
0 1

))−1(
y1 − 0
y2 − 0

)

(b) Based on your intuition and your answer to (b), describe what happens to the smoothed values as
σ2
v → 0, but all of the other parameters are held constant in one sentence.

• As σ2
v → 0, the smoothed values will shrink towards the observed values and become less smooth.

• Decreasing σ2
v makes the conditional means of the states more closely track the observed data, and it

makes the conditional variances of the states smaller.

(c) Based on your intuition and your answer to (b), describe what happens to the smoothed values as
σ2
w → 0, but all of the other parameters are held constant in one sentence.

• As σ2
w → 0, the smoothed values will shrink more towards 0, the mean of the state model, and become

smoother.
• Decreasing σ2

w makes the conditional means of the states vary more smoothly and less like the observed
data, and makes the conditional variances of the states smaller.

(d) Based on your intuition and your answer to (b), describe what happens to the smoothed values as
φ→ 0, but all of the other parameters are held constant in one sentence.

• If φ > 0 and φ → 0, the smoothed values will shrink less towards each other and and become less
smooth, whereas if φ < 0 and φ → 0, the smoothed values will shrink more towards each other and
become smoother.

• The smoothed values will become proportional to observed values of y as φ→ 0
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3. Stochastic Volatility Model Properties

The stochastic volatility model is given by

yt = exp {ht/2} vt Observation Equation
(ht − µh) = φ (ht−1 − µh) + wt State Equation,

where |φ| < 1, vt
i.i.d.∼ N (0, 1), wt

i.i.d.∼ N
(
0, σ2

w

)
and h1 ∼ N

(
µh, σ

2
w/
(
1− φ2)).

(a) Derive µy = E [yt].

µy = E [yt]
= E [exp {ht/2} vt]
= E [exp {ht/2}]E [vt] = 0

(b) Derive γy (h) = Cov [yt−h, yt] for h > 0.

If h > 0,

γy (h) = Cov [yt−h, yt]
= E [ytyt−h]
= E [exp {(ht + ht−h) /2} vtvt−h]
= E [exp {(ht + ht−h) /2} vt−h]E [vt]
= 0.

(c) Are successive values of yt correlated under the stochastic volatility model? Answer by writing “yes” or
“no.”

No.
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4. An Application of the Stochastic Volatility Model

library(astsa)
data(gnp)
time <- time(gnp)
gnp <- c(gnp) - mean(gnp)
n <- length(gnp)

We’re going to keep working with the gnp data from the astsa package, and continue to focus on the second
differences ∇2xt, which are plotted again below.
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(a) Suppose we fit a stochastic volatility model to the second differences, using the default priors specified
by the stochvol package.

library(stochvol)
sims <- svsample(diff(gnp, d = 2),

draws = 100000)

This svsample command returns an object sims that contains:

• 100, 000 simulated values of φ: φ(1), . . . , φ(1)

• 100, 000 simulated values of µh: µ(1)
h , . . . , µ

(1)
h

• 100, 000 simulated values of σ2
w:
(
σ2
w

)(1)
, . . . ,

(
σ2
w

)(1)

Using the output of the svsample command, how would you approximate E
[
φ|∇2x1, . . . ,∇2xn

]
? Explain

using an equation, supplemented by at most one sentence. No need to write out the R code.

I would approximate E
[
φ|∇2x1, . . . ,∇2xn

]
using 1

100,000
∑100,000
i=1 φ(i).
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(b) Approximate forecasts of the second differences E
[
∇2xn+k|∇2x1, . . . ,∇2xn

]
and approximate forecasts

of the log magnitudes of the second differences E
[
log
((
∇2xn+k

)2
)
|∇2x1, . . . ,∇2xn

]
based on this

stochastic volatility model are given in the plots below. Based the plotted forecasts, does assuming a
stochastic volatility model for ∇2xt help us forecast ∇2xt or the log magnitudes log

((
∇2xt

)2
)
?
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Assuming a stochastic volatility model helps us forecast the log magnitudes log
((
∇2xt

)2
)
but not the values

∇2xt.

(c) In one sentence, explain why your answer in (b) makes sense given what we know about the stochastic
volatility model the previous question.

It makes sense that the stochastic volatility model does not help us forecast the values ∇2xt because successive
values ∇2xt are uncorrelated under the stochastic volatility model.
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5. Stationarity for Multivariate Time Series

Consider the following model for two simultaneously observed time series, x1 and x2:

xt1 = wt + wt−1

xt2 = vt + vt−1,

where

(
wt
vt

)
i.i.d∼ N

(
0,
(

σ2
v σvσwρ

t

σvσwρ
t σ2

w

))
,

and |ρ| < 1.

(a) What is the covariance function of xt1?

γx1 (h) =

 2σ2
v h = 0

σ2
v |h| = 1

0 otherwise

(b) Is xt1 stationary? Write “yes” or “no.”

Yes.

(c) Is xt2 stationary? Write “yes” or “no,” but also explain your answer in at most one sentence.

Yes, it is exactly the same type of process as xt1.
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(d) What is the cross-covariance function of xt1 and xt2?

γx1x2 (h) =


σvσw

(
ρt + ρt−1) h = 0

σvσwρ
t h = 1

σvσwρ
t−1 h = −1

0 otherwise

(e) Are these processes jointly stationary? Write “yes” or “no.”

No.
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(f) Suppose we change our model for vt and wt. If

(
wt
vt

)
i.i.d∼ N

(
0,
(

σ2
v σvσwρ

σvσwρ σ2
w

))
,

where |ρ| < 1. What is the cross-covariance function of xt1 and xt2?

γx1x2 (h) =

 2σvσwρ h = 0
σvσwρ |h| = 1

0 otherwise

(g) If we assume the distribution for the errors given in (g), are these processes jointly stationary? Write
“yes” or “no.”

Yes.
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Bonus

In one sentence, explain whether you generally prefer the ARMA modeling framework or the state-space
modeling framework and why. You will receive full credit for your answer as long as it is not something that
is false.
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