Homework 2 Due: Thursday 2/7/19 by 12:00pm (noon)

An Overview of Level- α Tests

This homework is going to ask you to conduct a level- α tests of a null hypothesis, which requires that you combine a few bits of information from class.

Let's call the null hypothesis H and the alternative hypothesis K. Suppose we have a test statistic \hat{t} , that is a function of the data, and that we know either exactly or approximately what the distribution of \hat{t} is under the null H. Then we can construct a level- α test of the null hypothesis H by comparing \hat{t} to the $1 - \alpha/2$ and $\alpha/2$ quantiles of the distribution of \hat{t} under the null H. If \hat{t} is within those quantiles, we **accept** the null hypothesis H, otherwise we reject it.

This general idea is something that I expect have seen in your previous statistics classes, and we referenced it in our review of linear regression when we talked about testing the null hypothesis H that $\hat{\beta}_j$ is exactly equal to a specific value for some j. Consider testing the null hypothesis $H : \beta_1 = 0$ against the alternative $K : \beta_1 \neq 0$. For such a problem, our test statistic is

$$\hat{t} = \frac{\hat{\beta}_1}{s_w \sqrt{\left(\boldsymbol{Z}'\boldsymbol{Z}\right)_{11}^{-1}}},$$

and we know that $\hat{t} \sim \mathcal{T}_{n-q}$ under H, where q is the number of covariates we have in our regression model (number of columns of Z). We perform a level- α test of H by comparing \hat{t} to the $1 - \alpha/2$ and $\alpha/2$ quantiles of a \mathcal{T}_{n-q} distribution. If \hat{t} is within these quantiles, we accept $H : \beta_1 = 0$, otherwise we reject it. Here's a bit of R code to demonstrate what I mean, in this example:

```
# Let's work through this example with our chicken data
library(astsa)
data(chicken)
n <- length(chicken)</pre>
reg <- lm(chicken~time(chicken))</pre>
s.w <- summary(reg)$sig</pre>
q <- length(coef(reg))</pre>
# Let's test if the time coefficient is equal to zero
# First, construct the test statistic
ZtZ.inv <- solve(crossprod(model.matrix(reg)))</pre>
t.hat <- coef(reg)["time(chicken)"]/(s.w*sqrt(ZtZ.inv[2, 2]))</pre>
# Note: Another way to get this would be to set
# t.hat = summary(req)$coef["time(chicken)", "t value"]
#
# In this case, we know that the test statistic should be t-distributed under the
# null with n-q degrees of freedom. The quantiles for a level alpha = 0.05 test will be
alpha <- 0.05
q \leftarrow qt(c(alpha/2, 1 - alpha/2), df = n - q)
# Compare the test statistic to these quantiles, do we accept?
t.hat %in% q # Accept null if TRUE, reject otherwise
```

To apply this idea to these problems, ask yourself: What is a sample quantity that we can calcuate for a time series \boldsymbol{x} and use as a test statistic \hat{t} that:

- We talked about in class;
- Is relevant to testing a hypothesis about $\rho_x(1)$;

• We know the approximate or exact distribution of under the null that x is a white noise time series, with $\rho_x(1) = 0$?

The AR(1) Model

- 1. This problem will ask you to work with the autoregressive (AR) model.
 - (a) Describe what R returns when you run x <- arima.sim(n = 100, list(ar=1), sd = 1), and why this occurs.
 - (b) Simulate 1,000 **AR**(1) time series of length n = 100 with $\sigma_w^2 = 1$ for values of $\phi_1 = \{-0.5, -0.25, -0.125, 0, 0.125, 0.25, 0.5\}$. For each value of ϕ_1 , compute the percent of simulations in which a level-0.05 test of the null hypothesis that the time series is white noise, with $\rho_x(1) = 0$, rejects the null, using $\hat{\rho}_x(1)$ from class and 3.(h) in Homework 1. Plot the percent of simulations in which a test of the null hypothesis rejects the null against ϕ_1 .
 - (c) When $\phi_1 \neq 0$, the percent of simulations in which a test of the null hypothesis that $\rho_x(1) = 0$ rejects the null estimates the **power** of the test. When $\phi_1 = 0$, the percent of simulations in which a test of the null hypothesis that $\rho_x(1) = 0$ rejects the null estimates the **level** of the test. Is the estimated level 0.05, as we would expect from a level-0.05 test? If not, why not?
 - (d) Describe in at most two sentences how the power of the test relates to the true value ϕ_1 . Intuitively, does this make sense?

The MA(1) Model

- 2. This problem will ask you to work with the moving average (MA) model.
 - (a) Without using the arima.sim function or any other third party function for simulating an MA time series, simulate a length-100 time series x according to the MA model:

$$x_t = 0.5w_{t-1} + w_t, \ w_t \stackrel{i.i.d.}{\sim} \mathcal{N}\left(0,1\right)$$

- (b) Using the code you wrote in (a) or arima.sim, simulate 1,000 MA (1) time series of length n = 100 with $\sigma_w^2 = 1$ for values of $\theta_1 = \{-1, -0.268, -0.127, 0, 0.127, 0.268, 1\}$. For each value of θ_1 , compute the percent of simulations in which a test of the null hypothesis that the time series is white noise, with $\rho_x(1) = 0$, rejects the null, using $\hat{\rho}_x(1)$ from class and 3.(h) in Homework 1. Plot the percent of simulations in which a test of the null hypothesis rejects the null against θ_1 .
- (c) When $\theta_1 \neq 0$, the percent of simulations in which a test of the null hypothesis that $\rho_x(1) = 0$ rejects the null estimates the **power** of the test. When $\theta_1 = 0$, the percent of simulations in which a test of the null hypothesis that $\rho_x(1) = 0$ rejects the null estimates the **level** of the test. Is the estimated level 0.05? If not, why not?
- (d) Describe in at most two sentences how the power of the test relates to the true value θ_1 . Intuitively, does this make sense?

Comparing AR(1) and MA(1) Models

- 3. This problem asks you to compare what you observed in 1. (b)-(d) to what you observed in 2. (b)-(d).
 - (a) Compute the true lag-one autocorrelation $\rho_x(1)$ under for an **AR**(1) model with $\phi_1 = \{-0.5, -0.25, -0.125, 0.125, 0.25, 0.5\}$.
 - (b) Compute the true lag-one autocorrelation $\rho_x(1)$ under for an **MA**(1) model with $\theta_1 = \{-1, -0.268, -0.127, 0, 0.127, 0.268, 1\}.$
 - (c) Plot the percent of simulations in which a test of the null hypothesis rejects the null against the true autocorrelation $\rho_x(1)$ for both the **AR**(1) and **MA**(1) simulations on a single plot. You

should have two lines or sets of points, one for the AR(1) simulations and one for the MA(1) simulations.

(d) In one sentence, interpret what you observe in (c), taking what you find in (a) and (b) into account.