
Homework 2
Due: Thursday 2/7/19 by 12:00pm (noon)

Grading Scheme:

• Maximum of 2 points for 1., determined as follows:
– 0 points for no solutions whatsoever or R output only
– 1 point for an honest effort but very few correct answers
– 2 points for the correct plot and written answers that are on the right track

• Maximum of 2 points for 2., determined as follows:
– 0 points for no solutions whatsoever or R output only
– 1 point for an honest effort but very few correct answers
– 2 points for the correct plot and written answers that are on the right track

• 1 point for 3. if autocovariances and plot are correct and written answers are on the right track

Solutions are given below in blue.

An Overview of Level-α Tests

This homework is going to ask you to conduct a level-α tests of a null hypothesis, which requires that you
combine a few bits of information from class.

Let’s call the null hypothesis H and the alternative hypothesis K. Suppose we have a test statistic t̂, that is
a function of the data, and that we know either exactly or approximately what the distribution of t̂ is under
the null H. Then we can construct a level-α test of the null hypothesis H by comparing t̂ to the 1− α/2 and
α/2 quantiles of the distribution of t̂ under the null H. If t̂ is within those quantiles, we accept the null
hypothesis H, otherwise we reject it.

This general idea is something that I expect have seen in your previous statistics classes, and we referenced
it in our review of linear regression when we talked about testing the null hypothesis H that β̂j is exactly
equal to a specific value for some j. Consider testing the null hypothesis H : β1 = 0 against the alternative
K : β1 6= 0. For such a problem, our test statistic is

t̂ = β̂1
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,

and we know that t̂ ∼ Tn−q under H, where q is the number of covariates we have in our regression model
(number of columns of Z). We perform a level-α test of H by comparing t̂ to the 1− α/2 and α/2 quantiles
of a Tn−q distribution. If t̂ is within these quantiles, we accept H : β1 = 0, otherwise we reject it. Here’s a
bit of R code to demonstrate what I mean, in this example:
# Let's work through this example with our chicken data
library(astsa)
data(chicken)
n <- length(chicken)
reg <- lm(chicken~time(chicken))
s.w <- summary(reg)$sig
q <- length(coef(reg))
# Let's test if the time coefficient is equal to zero
# First, construct the test statistic
ZtZ.inv <- solve(crossprod(model.matrix(reg)))
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t.hat <- coef(reg)["time(chicken)"]/(s.w*sqrt(ZtZ.inv[2, 2]))
# Note: Another way to get this would be to set
# t.hat = summary(reg)$coef["time(chicken)", "t value"]
#
# In this case, we know that the test statistic should be t-distributed under the
# null with n-q degrees of freedom. The quantiles for a level alpha = 0.05 test will be
alpha <- 0.05
q <- qt(c(alpha/2, 1 - alpha/2), df = n - q)
# Compare the test statistic to these quantiles, do we accept?
t.hat >= q[1] & t.hat <= q[2] # Accept null if TRUE, reject otherwise
# Note: There was a typo that I made here before,
# t.hat %in% q does *not* do the right thing. I apologize for any confusion!
# Points will not be taken off if t.hat %in% q was used in
# place of t.hat >= q[1] & t.hat <= q[2]

To apply this idea to these problems, ask yourself: What is a sample quantity that we can calcuate for a time
series x and use as a test statistic t̂ that:

• We talked about in class;
• Is relevant to testing a hypothesis about ρx (1);
• We know the approximate or exact distribution of under the null that x is a white noise time series,

with ρx (1) = 0?

The AR(1) Model

1. This problem will ask you to work with the autoregressive (AR) model.

(a) Describe what R returns when you run x <- arima.sim(n = 100, list(ar=1), sd = 1), and why
this occurs.

R returns the error Error in arima.sim(n = 100, list(ar = 1), sd = 1) : 'ar' part of
model is not stationary, because an AR(1) model is not stationary when φ1 = 1. Specifically,
when φ1 = 1, xt will have infinite variance.

(b) Simulate 1, 000 AR (1) time series of length n = 100 with σ2
w = 1 for values of φ1 =

{−0.5,−0.25,−0.125, 0, 0.125, 0.25, 0.5}. For each value of φ1, compute the percent of simula-
tions in which a level-0.05 test of the null hypothesis that the time series is white noise, with ρx (1) = 0,
rejects the null, using ρ̂x (1) from class and 3.(h) in Homework 1. Plot the percent of simulations in
which a test of the null hypothesis rejects the null against φ1.

set.seed(1)
phi1s <- c(-0.5, -0.25, -0.125, 0, 0.125, 0.25, 0.5)
n <- 100
xs <- array(dim = c(5000, n, length(phi1s)))
for (i in 1:dim(xs)[1]) {

for (k in 1:length(phi1s)) {
phi1 <- phi1s[k]
if (phi1 != 0) {

xs[i, , k] <- arima.sim(n = n, list(ar=phi1), sd = 1)
} else {

xs[i, , k] <- rnorm(n)
}

}
}
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acf1s <- apply(xs, c(1, 3), function(x) acf(x, plot = FALSE)$acf[2])
ci <- qnorm(c(0.025, 0.975), mean = 0, sd = 1/sqrt(n))
ar.rej.null <- apply(acf1s, 2, function(x) {

mean(!(x >= ci[1] & x <= ci[2]))
})
plot(phi1s, 100*ar.rej.null, type = "b",

ylab = "% Simulations Reject", xlab = expression(phi[1]))
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(c) When φ1 6= 0, the percent of simulations in which a test of the null hypothesis that ρx (1) = 0 rejects the
null estimates the power of the test. When φ1 = 0, the percent of simulations in which a test of the null
hypothesis that ρx (1) = 0 rejects the null estimates the level of the test. Is the estimated level 0.05, as we
would expect from a level-0.05 test? If not, why not?

When φ1 = 0, a test of the null hypothesis that ρx (1) = 0 rejects the null hypothesis in 4.84% of simulations.
This is a bit lower than what we would expect. The discrepancy could be due to the fact that the test is
based on an approximate distribution for ρ̂x (1), as opposed to the exact distribution.

(d) Describe in at most two sentences how the power of the test relates to the true value φ1. Intuitively,
does this make sense?

The power of the test is increasing with the magnitude of φ1. Intuitively, this makes sense - the test is better
able to detect departures when the null when the data are more different than the null, as is the case when
φ1 is large in magnitude.

The MA(1) Model

2. This problem will ask you to work with the moving average (MA) model.
(a) Without using the arima.sim function or any other third party function for simulating an MA

time series, simulate a length-100 time series x according to the MA model:

xt = 0.5wt−1 + wt, wt
i.i.d.∼ N (0, 1)
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n <- 100
ma <- 0.5
w <- rnorm(n + 1, mean = 0, sd = 1)
x <- numeric(length(n))
for (i in 1:n) {

x[i] <- ma*w[i] + w[i + 1]
}

(b) Using the code you wrote in (a) or arima.sim, simulate 1, 000 MA (1) time series of length n = 100
with σ2

w = 1 for values of θ1 = {−1,−0.268,−0.127, 0, 0.127, 0.268, 1}. For each value of θ1, compute
the percent of simulations in which a test of the null hypothesis that the time series is white noise,
with ρx (1) = 0, rejects the null, using ρ̂x (1) from class and 3.(h) in Homework 1. Plot the percent of
simulations in which a test of the null hypothesis rejects the null against θ1.

theta1s <- c(-1, -0.268, -0.127, 0, 0.127, 0.268, 1)
n <- 100
xs <- array(dim = c(5000, n, length(theta1s)))
for (i in 1:dim(xs)[1]) {

for (k in 1:length(theta1s)) {
theta1 <- theta1s[k]
if (theta1 != 0) {

xs[i, , k] <- arima.sim(n = n, list(ma=theta1), sd = 1)
} else {

xs[i, , k] <- rnorm(n)
}

}
}
acf1s <- apply(xs, c(1, 3), function(x) acf(x, plot = FALSE)$acf[2])
ci <- qnorm(c(0.025, 0.975), mean = 0, sd = 1/sqrt(n))
ma.rej.null <- apply(acf1s, 2, function(x) {

mean(!(x >= ci[1] & x <= ci[2]))
})
plot(theta1s, 100*ma.rej.null, type = "b",

ylab = "% Simulations Reject", xlab = expression(theta[1]))
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(c) When θ1 6= 0, the percent of simulations in which a test of the null hypothesis that ρx (1) = 0 rejects
the null estimates the power of the test. When θ1 = 0, the percent of simulations in which a test of
the null hypothesis that ρx (1) = 0 rejects the null estimates the level of the test. Is the estimated
level 0.05? If not, why not?

When θ1 = 0, a test of the null hypothesis that ρx (1) = 0 rejects the null hypothesis in 5.26% of simulations.
This is a bit lower than what we would expect. Again, the discrepancy could be due to the fact that the test
is based on an approximate distribution for ρ̂x (1), as opposed to the exact distribution.

(d) Describe in at most two sentences how the power of the test relates to the true value θ1. Intuitively,
does this make sense?

The power of the test is increasing with the magnitude of θ1. Intuitively, this makes sense - the test is better
able to detect departures when the null when the data are more different than the null, as is the case when
θ1 is large in magnitude.

Comparing AR(1) and MA(1) Models

3. This problem asks you to compare what you observed in 1. (b)-(d) to what you observed in 2. (b)-(d).

(a) Compute the true lag-one autocorrelation ρx (1) under for an AR (1) model with φ1 =
{−0.5,−0.25,−0.125, 0.125, 0.25, 0.5}.

The true lag-one autocorrelations are given in the following table.

φ1 ρx (1)
-0.5 -0.5
-0.25 -0.25
-0.125 -0.125
0 0
0.125 0.125
0.25 0.25
0.5 0.5
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(b) Compute the true lag-one autocorrelation ρx (1) under for an MA (1) model with θ1 =
{−1,−0.268,−0.127, 0, 0.127, 0.268, 1}.

The true lag-one autocorrelations are given in the following table, rounded to the nearest thousandth.

θ1 ρx (1)
-1 -0.5
-0.268 -0.25
-0.127 -0.125
0 0
0.127 0.125
0.268 0.25
1 0.5

(c) Plot the the percent of simulations in which a test of the null hypothesis rejects the null against the
true autocorrelation ρx (1) for both the AR(1) and MA(1) simulations on a single plot. You should
have two lines or sets of points, one for the AR(1) simulations and one for the MA(1) simulations.

plot(phi1s, ar.rej.null*100, type = "b", xlab = expression(rho[x](1)),
ylab = "% Simulations Reject")

points(theta1s/(1 + theta1s^2), ma.rej.null*100, col = "blue", type = "b")
legend("bottomright", col = c("black", "blue"), pch = c(1, 1),

legend = c("AR(1)", "MA(1)"))
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(d) In one sentence, interpret what you observe in (c), taking what you find in (a) and (b) into account.

We observe that the results are almost exactly the same for fixed ρx (1) regardless of whether or not an
AR(1) or MA(1) model is used. Intuitively, this is somewhat surprising because the AR(1) and MA(1) are
different models, specifically an AR(1) model induces dependence of xt on the current value wt infinitely
many past values wt−1, . . . , wt−j , . . ., whereas an AR(1) model incudes dependence of xt on just the current
and most recent past values wt and wt−1. However these results suggest that, at least for n = 100, the sample
lag-one autocorrelation behaves similarly under both models.
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