
Homework 4
Due: Thursday 2/28/19 by 12:00pm (noon)

Although this homework assignment is not due until Thursday 2/28/19, there may be related material on
your exam on Friday, 2/22/19.

Forecasting

1. In class, we derived the forecasting equation for computing x̂n+1 =
∑n

j=1 cnjxn+1−j based on
x1, . . . , xn by minimizing

vn = E


xn+1 −

n∑
j=1

cnjxn+1−j

2
 .

(a) Write down the quantity we should minimize if we want to forecast values further into the future, i.e. if
we want to compute x̂n+k for any k > 0.

(b) Write out the forecasting equation that corresponds to (a). Hint: In class we talked about minimizing
vn. Defining an,ij = γx (i− j) and bn,i = γx (i), the corresponding forecasting equation was:

Ancn = bn.

(c) In class, I showed you the following function for computing the values cn and vn for a ARMA(1, 1)
model.
solve.direct <- function(n, phi1 = 0, theta1 = 0, sig.sq.w = 1) {

A.n <- matrix(nrow = n, ncol = n)
b.n <- numeric(n)
for (i in 1:n) {

b.n[i] <- gamma.x(i, phi1 = phi1, theta1 = theta1, sig.sq.w = sig.sq.w)
for (j in 1:n) {

A.n[i, j] <- gamma.x(h = i - j, phi1 = phi1, theta1 = theta1, sig.sq.w = sig.sq.w)
}

}
c.n <- solve(A.n)%*%b.n
v.n <- gamma.x(0, phi1 = phi1, theta1 = theta1, sig.sq.w = sig.sq.w) +

t(c.n)%*%A.n%*%c.n - 2*t(c.n)%*%b.n
return(list("c.n" = c.n, "v.n" = v.n))

}

Modify this function to take an additional argument, k, and return the coefficients that give the forecast
x̂n+k as well as the expected squared error loss of x̂n+k. Note that you will need to use the gamma.x function
from class.
gamma.x <- function(h, phi1, theta1, sig.sq.w) {

h <- abs(h)
if (h == 0) {

g.x <- (theta1^2 + 2*phi1*theta1 + 1)*sig.sq.w/(1 - phi1^2)
} else {

g.x <- sig.sq.w*phi1^(h - 1)*((1 + theta1*phi1)*(phi1 + theta1)/(1 - phi1^2))
}
return(g.x)

}
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(d) Use the function you wrote in (c) to plot the expected squared error loss of x̂3+k for the following
models for k = 1, . . . , 5, all with σ2

w = 2:

i. φ1 = 0.5, θ1 = 0;;
ii. φ1 = −0.5, θ1 = 0;;
iii. φ1 = 0, θ1 = 0.57735;
iv. φ1 = 0, θ1 = −0.57735.

Include a horizontal dashed line at γx (0) (Note: γx (0) is the same for all of the models).

(e) In one sentence, interpret how the forecast error relates to the sign of φ1 or θ1.

(f) In one sentence, interpret how the forecast error changes as k increases for an AR(1) model versus an
MA(1) model.

(g) Add two more lines to your plot in (d) corresponding to the following models with σ2
w = 0.2533333:

v. φ1 = 0.9, θ1 = 0;

vi. φ1 = 0, θ1 = 2.064742.

(i) Is the variance γx (0) still the same as it was for the models first plotted in (c)?

(j) In one sentence, interpret what you see in (g). How does increasing φ1 or θ1 affect how the the forecast
error changes as k increases?

Estimation

Let’s look back at the chicken data one more time. We’re going to consider ARMA(p, q) time series models
for the residuals from a linear regression of the chicken prices on an intercept and time. I’ve computed them
for you here and named them r, to make sure everyone starts out on the same page.
library(astsa)
data(chicken)
r <- lm(chicken~time(chicken))$res

2. First, we’re going to consider setting q = 0 and fitting an AR(p) model to r.

(a) Using the acf function, plot the sample partial autocorrelations. Based on the sample partial autocor-
relation function, what would you select for p? Accompany your choice with at most one sentence of
reasoning.

(b) Setting the order based on (a), fit the AR(p) model to r using the Yule-Walker equations. I do not
want you to use the ar.yw function, but you can base your code on the the solve.direct function.
Give the AR(p) parameter estimates.

3. Now, we’re going to consider setting p = 0 and fitting an MA(q) model to r.

(a) Using the acf function, plot the sample autocorrelations. Based on the sample autocorrelations, what
would you select for q? Accompany your choice with at most one sentence of reasoning.

(b) Fit an MA(1) model to r by computing the innovation coefficients dn using the function given in
class, and treating the innovation coefficient estimates dn as estimates of ψ1, . . . , ψn. Give the MA(1)
coefficient estimate.

4. Finally, let’s to consider fitting an ARMA(p, q) model to r.

(a) Can we use the sample autocorrelations or sample partial autocorrelations to select p or q? Just give a
yes or no.
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(b) Using the arima function, fit ARMA(p, q) models with p = 0, . . . , 3 and q = 0, . . . , 3, excluding the
case where p = q = 0. Compute AIC, AICc, and BIC according to the equations that were given in
class early on by hand.

(c) Plot the residuals from the AIC-minimizing model.

(d) Fit the AIC-minimizing model to r using the arima function. What algorithm does the arima
function use to estimate φ1, . . . , φp, θ1, . . . , θp and σ2

w by default? (Unconditional maximum likelihood,
unconconditional least squares, conditional least squares. . .)

(e) On a plot with the x-axis ranging from 2001 + 7/12 to 2020 and y-axis randing from 60 to 130, plot:

• The observed chicken time series.
• The linear model fit of the chicken time series, i.e. the fitted values you get from lm(chicken~time(chicken)).
• Predicted mean chicken prices from 2016 + 6/12 to 2020 based on the model you fit in (d). Remember -

you fit the model in (e) to the residuals, but we want predicted chicken prices. So you’ll have to add
the linear fit to the predictions you get from the ARMA model.

• Predicted mean chicken prices from 2016 + 6/12 to 2020 plus or minus one standard error based on the
model you fit in (e). Again, you’ll have to add the linear model fit to the prediction standard errors
you get from the ARMA model.

You can get the predictions and standard errors by applying the predict function to your arima object from
part (d).
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