
Homework 4 Solutions
Due: Thursday 2/28/19 by 12:00pm (noon)

Although this homework assignment is not due until Thursday 2/28/19, there may be related material on
your exam on Friday, 2/22/19.

Since this homework had more parts than usual, we have graded it out of 10, however it will be equally
weighted with the rest of the homeworks when your total grade is computated. Since 1. (a)-(b) were on the
exam, we just graded 1. (c)-(i) on a 0-3 scale as follows:

• 0 points for nothing written.
• 1 point for issues with code and interpretation.
• 2 points for either code correct but interpretations off or interpretations correct but code off.
• 3 points for pretty much everything correct.

Questions 2. and 3. were each worth 2 points, distributed as follows:

• 0 points for incorrect order, incorrect estimation of parameters.
• 1 point for correct or off by one order order, incorrect estimation of parameters.
• 2 points for correct order and estimation of parameters.

Question 4. (a)-(e) was worth 3 points in total, distributed as follows:

• 0 points for nothing correct.
• 1 point for very little correct.
• 2 points for almost everything correct, e.g. everything but final plot is correct.
• 3 points for everything correct.

Forecasting

1. In class, we derived the forecasting equation for computing x̂n+1 =
∑n

j=1 cnjxn+1−j based on
x1, . . . , xn by minimizing

vn = E


xn+1 −

n∑
j=1

cnjxn+1−j

2
 .

(a) Write down the quantity we should minimize if we want to forecast values further into the future, i.e. if
we want to compute x̂n+k for any k > 0.

We want to find the values c1, . . . , cn that minimize

E


xn+k −

n∑
j=1

cjxn+1−j

2
 .

Note that you can use whatever notation you want, i.e. we could equivalently say that we want to find the
values c(n+k−1)1, . . . , c(n+k−1)n that minimize

E


xn+k −

n∑
j=1

c(n+k−1)jxn+1−j

2
 ,
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or we could say that we want to find the values ck, . . . , ck+n−1 that minimize

E


xn+k −

n+k−1∑
j=k

cjxn+k−j

2
 .

The main idea remains the same regardless of what notation we use - we want to find the linear combination
of observed values x1, . . . , xn that minimizes expected squared error loss for predicting xn+k.

(b) Write out the forecasting equation that corresponds to (a). Hint: In class we talked about minimizing
vn. Defining an,ij = γx (i− j) and bn,i = γx (i), the corresponding forecasting equation was:

Ancn = bn.

Let’s stick with the notation c to refer to the prediction of xn+k as we did first in (a). Remember, we got the
forecasting equation in the one-step-ahead case by expanding out the expected squared forecast error vn and
differentiating with respect to cn. Let’s try that again approach again here, first expanding the expected
squared forecast error:

E


xn+k −

n∑
j=1

cjxn+1−j

2
 = E

x2
n+k − 2xn+k

 n∑
j=1

cjxn+1−j

 +

 n∑
j=1

cjxn+1−j

2


= γx (0)− 2

 n∑
j=1

cjE [xn+1−jxn+k]

 +

 n∑
j=1

n∑
l=1

cjclE [xn+1−jxn+1−l]


= γx (0)− 2

 n∑
j=1

cjγx (k − 1 + j)

 +

 n∑
j=1

n∑
l=1

cjclγx (l − j)


= γx (0)− 2c′b + c′Ac,

where bj = γx (k − 1 + j) and ajl = γx (l − j) for j = 1, . . . , n and l = 1, . . . , n.

Now we can easily differentiate with respect to c. Setting the derivative equal to zero, we get:

−2b + 2Ac = 0 =⇒ Ac = b.

(c) In class, I showed you the following function for computing the values cn and vn for a ARMA(1, 1)
model.

solve.direct <- function(n, phi1 = 0, theta1 = 0, sig.sq.w = 1) {
A.n <- matrix(nrow = n, ncol = n)
b.n <- numeric(n)
for (i in 1:n) {

b.n[i] <- gamma.x(i, phi1 = phi1, theta1 = theta1, sig.sq.w = sig.sq.w)
for (j in 1:n) {

A.n[i, j] <- gamma.x(h = i - j, phi1 = phi1, theta1 = theta1, sig.sq.w = sig.sq.w)
}

}
c.n <- solve(A.n)%*%b.n
v.n <- gamma.x(0, phi1 = phi1, theta1 = theta1, sig.sq.w = sig.sq.w) +

t(c.n)%*%A.n%*%c.n - 2*t(c.n)%*%b.n
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return(list("c.n" = c.n, "v.n" = v.n))
}

Modify this function to take an additional argument, k, and return the coefficients that give the forecast
x̂n+k as well as the expected squared error loss of x̂n+k. Note that you will need to use the gamma.x function
from class.
gamma.x <- function(h, phi1, theta1, sig.sq.w) {

h <- abs(h)
if (h == 0) {

g.x <- (theta1^2 + 2*phi1*theta1 + 1)*sig.sq.w/(1 - phi1^2)
} else {

g.x <- sig.sq.w*phi1^(h - 1)*((1 + theta1*phi1)*(phi1 + theta1)/(1 - phi1^2))
}
return(g.x)

}

The only thing that changes is computation of the entries of b, they will depend on k now.
solve.direct <- function(n, phi1 = 0, theta1 = 0, sig.sq.w = 1, k = 1) {

A.n <- matrix(nrow = n, ncol = n)
b.n <- numeric(n)
for (i in 1:n) {

b.n[i] <- gamma.x(i + k - 1, phi1 = phi1, theta1 = theta1, sig.sq.w = sig.sq.w)
for (j in 1:n) {

A.n[i, j] <- gamma.x(h = i - j, phi1 = phi1, theta1 = theta1, sig.sq.w = sig.sq.w)
}

}
c.n <- solve(A.n)%*%b.n
v.n <- gamma.x(0, phi1 = phi1, theta1 = theta1, sig.sq.w = sig.sq.w) +

t(c.n)%*%A.n%*%c.n - 2*t(c.n)%*%b.n
return(list("c.n" = c.n, "v.n" = v.n))

}

(d) Use the function you wrote in (c) to plot the expected squared error loss of x̂3+k for the following
models for k = 1, . . . , 5, all with σ2

w = 2:

i. φ1 = 0.5, θ1 = 0;
ii. φ1 = −0.5, θ1 = 0;
iii. φ1 = 0, θ1 = 0.57735;
iv. φ1 = 0, θ1 = −0.57735.

Include a horizontal dashed line at γx (0) (Note: γx (0) is the same for all of the models).
n <- 3
sig.sq.w <- 2
pars <- data.frame("phi1" = c(0.5, -0.5, 0, 0),

"theta1" = c(0, 0, 0.57735, -0.57735))
v <- matrix(nrow = nrow(pars), ncol = 5)
gamma.x.0 <- numeric(nrow(pars))
for (i in 1:nrow(pars)) {

for (k in 1:ncol(v)) {
v[i, k] <- solve.direct(n = n, phi1 = pars[i, "phi1"], theta1 = pars[i, "theta1"],

sig.sq.w = sig.sq.w, k = k)$v.n
}
gamma.x.0[i] <- gamma.x(0, phi1 = pars[i, "phi1"], theta1 = pars[i, "theta1"],

sig.sq.w = sig.sq.w)
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}
plot(1:ncol(v), v[1, ], ylim = c(min(v), gamma.x.0[1]), type = "n",

xlab = "", ylab = "")
mtext(expression(paste("E","[",(x[3+k]-hat(x)[3+k])^2,"]",sep = "")), 2, line = 2)
mtext("k", 1, line = 2)
abline(h = gamma.x.0[1], lty = 3)
for (i in 1:nrow(pars)) {

lines(1:ncol(v), v[i, ], col = i, lty = i %in% c(2, 4) + 1)
}
legend("bottomright", col = c(1:4), lty = c(1, 2, 1, 2),

legend = c("i.", "ii.", "iii.", "iv."),
title = "Model", bty = "n")
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(e) In one sentence, interpret how the forecast error relates to the sign of φ1 or θ1.

The expected squared forecast error doesn’t depend on the sign of φ1 or θ1 at all, which suggests that how
well we can forecast future values depends on the absolute magnitudes of the correlations over time, as
opposed to their signs.

(f) In one sentence, interpret how the forecast error changes as k increases for an AR(1) model versus an
MA(1) model.

The expected squared forecast error increases as k increases, because as k increases we have to predict further
into the future without any new data.

(g) Add two more lines to your plot in (d) corresponding to the following models with σ2
w = 0.2533333:

v. φ1 = 0.9, θ1 = 0;

vi. φ1 = 0, θ1 = 2.064742.
n <- 3
pars <- data.frame("phi1" = c(0.5, -0.5, 0, 0, 0.9, 0),

"theta1" = c(0, 0, 0.57735, -0.57735, 0, 2.064742),
"sig.sq.w" = c(2, 2, 2, 2, 0.2533333, 0.2533333))

v <- matrix(nrow = nrow(pars), ncol = 5)
gamma.x.0 <- numeric(nrow(pars))

4



for (i in 1:nrow(pars)) {
for (k in 1:ncol(v)) {

v[i, k] <- solve.direct(n = n, phi1 = pars[i, "phi1"], theta1 = pars[i, "theta1"],
sig.sq.w = pars[i, "sig.sq.w"], k = k)$v.n

}
gamma.x.0[i] <- gamma.x(0, phi1 = pars[i, "phi1"], theta1 = pars[i, "theta1"],

sig.sq.w = pars[i, "sig.sq.w"])
}
plot(1:ncol(v), v[1, ], ylim = c(min(v), gamma.x.0[1]), type = "n",

xlab = "", ylab = "")
mtext(expression(paste("E","[",(x[3+k]-hat(x)[3+k])^2,"]",sep = "")), 2, line = 2)
mtext("k", 1, line = 2)
abline(h = gamma.x.0[1], lty = 3)
abline(h = gamma.x.0[5], lty = 3, col = 2)
for (i in 1:nrow(pars)) {

lines(1:ncol(v), v[i, ], col = i, lty = i %in% c(2, 4) + 1)
}
legend("topright", col = c(1:6, 1, 2), lty = c(1, 2, 1, 2, 1, 1, 3, 3),

legend = c("Model i.", "Model ii.", "Model iii.",
"Model iv.", "Model v.", "Model vi.",
expression(paste(gamma[x],"(", 0, ") i.-iv.", sep = "")),
expression(paste(gamma[x],"(", 0, ") v.-vi.", sep = ""))),

title = "", bty = "n", cex = 0.7)
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(h) Is the variance γx (0) still the same as it was for the models first plotted in (c)?

No, so the models will not converge to the same expected squared forecast error as k →∞.

(i) In one sentence, interpret what you see in (g). How does increasing φ1 or θ1 affect how the the forecast
error changes as k increases?

Increasing θ1 does not change the fact that the forecast error increases to γx (0) immediately when k > 1
because only the lag-one autocorrelation ρx (1) is nonzero under an MA(1) model, whereas increasing φ1
makes the forecast error increase to γx (0) more slowly.

5



Estimation

Let’s look back at the chicken data one more time. We’re going to consider ARMA(p, q) time series models
for the residuals from a linear regression of the chicken prices on an intercept and time. I’ve computed them
for you here and named them r, to make sure everyone starts out on the same page.
library(astsa)
data(chicken)
r <- lm(chicken~time(chicken))$res

2. First, we’re going to consider setting q = 0 and fitting an AR(p) model to r.

(a) Using the acf function, plot the sample partial autocorrelations. Based on the sample partial autocor-
relation function, what would you select for p? Accompany your choice with at most one sentence of
reasoning.

I would select p = 2, because the sample partial autocorrelations for lags greater than two ĉhh for h > 2 are
within the approximate 95% intervals for ĉhh if the true value chh = 0.
acf(r, type = "partial",

main = "Sample Partial Autocorrelations of Residuals")
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(b) Setting the order based on (a), fit the AR(p) model to r using the Yule-Walker equations. I do not
want you to use the ar.yw function, but you can base your code on the the solve.direct function.
Give the AR(p) parameter estimates.

gamma.hat <- acf(r, lag.max = 3, plot = FALSE,
type = "cov")$acf[, 1, 1]

A.hat <- matrix(nrow = 2, ncol = 2)
A.hat[1, 1] <- A.hat[2, 2] <- gamma.hat[1]
A.hat[1, 2] <- A.hat[2, 1] <- gamma.hat[2]
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b.hat <- gamma.hat[2:3]

phi.hat <- solve(A.hat)%*%b.hat
sig.sq.w.hat <- gamma.hat[1] - t(phi.hat)%*%gamma.hat[2:3]

We obtain φ̂1 ≈ 1.57, φ̂2 ≈ −0.62, and σ̂2
w ≈ 0.77.

3. Now, we’re going to consider setting p = 0 and fitting an MA(q) model to r.

(a) Using the acf function, plot the sample autocorrelations. Based on the sample autocorrelations, what
would you select for q? Accompany your choice with at most one sentence of reasoning.

acf(r, main = "Sample Autocorrelations of Residuals")
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I would select q = 15, because the sample autocorrelations for lags greater than 15 ρ̂x (k) for k > 15 are
within the approximate 95% intervals for ρ̂x (k) if the true value ρx (k) = 0.

(b) Fit an MA(1) model to r by computing the innovation coefficients dn using the function given in
class, and treating the innovation coefficient estimates dn as estimates of ψ1, . . . , ψn. Give the MA(1)
coefficient estimate.

est.innov <- function(x) {
n <- length(x)
gamma.hat <- acf(x, type = "cov", plot=FALSE, lag.max = n-1)$acf
D <- matrix(nrow = n-1, ncol = n-1)
v <- rep(NA, n)
gamma.x.0 <- gamma.hat[1]
v[1] <- gamma.x.0
for (i in 1:(n - 1)) {

for (j in 0:(i-1)) {
D[i, i - j] <- gamma.hat[i - j + 1]
if (j > 0) {
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for (k in 0:(j - 1)) {
D[i, i - j] <- D[i, i - j] - D[j, j - k]*D[i, i - k]*v[k + 1]

}
}
D[i, i - j] <- D[i, i - j]/v[j + 1]

}
v[i + 1] <- gamma.x.0 - sum(D[i, i:1]^2*v[1:i], na.rm = TRUE)

}
return(list("D"=D, "d.n" = D[nrow(D), ],

"v" = v, "v.n" = v[length(v)]))
}
innov.r <- est.innov(r)

This gives θ̂1 = 1.48 and σ̂2
w = 6.83.

4. Finally, let’s to consider fitting an ARMA(p, q) model to r.

(a) Can we use the sample autocorrelations or sample partial autocorrelations to select p or q? Just give a
yes or no.

No.

(b) Using the arima function, fit ARMA(p, q) models with p = 0, . . . , 3 and q = 0, . . . , 3, excluding the
case where p = q = 0. Compute AIC, AICc, and BIC according to the equations that were given in
class early on by hand.

n <- length(r)
ps <- 0:3
qs <- 0:3
aics <- aiccs <- sics <- matrix(nrow = length(ps), ncol = length(qs))
for (p in ps) {

for (q in qs) {
if (!(p == q & p == 0)) {

fit <- arima(r, order = c(p, 0, q))
aics[which(p == ps), which(q == qs)] <- log(fit$sigma2) +

(n + 2*(p + q + 1))/n
aiccs[which(p == ps), which(q == qs)] <- log(fit$sigma2) +

(n + p + q + 1)/(n - p - q - 1 - 2)
sics[which(p == ps), which(q == qs)] <- log(fit$sigma2) +

(p + q + 1)*log(n)/(n)
}

}
}

(c) Plot the residuals from the AIC-minimizing model.
which.min <- which(aics == min(aics, na.rm = TRUE), arr.ind = TRUE)
fit <- arima(r, order = c(ps[which.min[1]], 0, qs[which.min[2]]))
plot(as.numeric(time(chicken)),

fit$residuals,
xlab = "Time", ylab = "Residuals", type = "l")
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(d) Fit the AIC-minimizing model to r using the arima function. What algorithm does the arima
function use to estimate φ1, . . . , φp, θ1, . . . , θp and σ2

w by default? (Unconditional maximum likelihood,
unconconditional least squares, conditional least squares. . .)

The arima documentation indicates that it computes starting values using conditional least squares, and
then applies unconditional maximum likelihood to compute the estimates that are returned to the user.

(e) On a plot with the x-axis ranging from 2001 + 7/12 to 2020 and y-axis randing from 60 to 130, plot:

• The observed chicken time series.
• The linear model fit of the chicken time series, i.e. the fitted values you get from lm(chicken~time(chicken)).
• Predicted mean chicken prices from 2016 + 6/12 to 2020 based on the model you fit in (d). Remember -

you fit the model in (e) to the residuals, but we want predicted chicken prices. So you’ll have to add
the linear fit to the predictions you get from the ARMA model.

• Predicted mean chicken prices from 2016 + 6/12 to 2020 plus or minus one standard error based on the
model you fit in (e). Again, you’ll have to add the linear model fit to the prediction standard errors
you get from the ARMA model.

You can get the predictions and standard errors by applying the predict function to your arima object from
part (d).
plot(chicken, type = "l", xlim = c(min(time(chicken)), 2020),

ylim = c(60, 130), xlab = "Time", ylab = "Chicken Prices")
lm <- lm(chicken~time(chicken))
abline(a = lm$coef[1], b = lm$coef[2], col = "purple")
n.ahead <-12*3 + 6
pred <- predict(fit, n.ahead = n.ahead, se.fit = TRUE)
t.new <- max(time(chicken)) + 1:length(pred$pred)/12
lines(t.new, lm$coef[1] + lm$coef[2]*t.new + pred$pred, col = "blue")
lines(t.new, lm$coef[1] + lm$coef[2]*t.new + pred$pred + qnorm(0.975)*pred$se,

col = "blue", lty = 2)
lines(t.new, lm$coef[1] + lm$coef[2]*t.new + pred$pred - qnorm(0.975)*pred$se,

col = "blue", lty = 2)
legend("bottomright", col = c("black", "purple", "blue", "blue"),

lty = c(1, 1, 1, 2), legend =
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c("Observed Values",
"Linear Model Fit",
"Predicted Values",
"Prediction Standard Errors"),

bty = "n")
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