
Homework 5 Solutions
Due: Thursday 3/13/19 by 12:00pm (noon)

We graded 1. on a 0-2 scale as follows:

• 0 points for nothing written.
• 1 point for some correct steps but not quite complete.
• 2 points for the whole thing correct.

You didn’t have to show every single step I did, but you should have shown where you applied the trigonometric
identities that were supplied.

We graded 2. on a 0-3 scale as follows:

• 0 points for nothing written.
• 1 point for some plot and answer attempts but nothing is quite right.
• 2 points for some correct plots and responses.
• 3 points for everything correct.

Spectral Analysis

1. Show that γx (h) =
∑q

k=1 σ
2
kcos (2πωkh) if

xt =
q∑

k=1
vkcos (2πωkt) + uksin (2πωkt) , vk, uk

i.i.d.∼ N
(
0, σ2

k

)
.

You will find the following trigonometric identities helpful:

• cos (a) = cos (−a);
• sin (−a) = −sin (a);
• cos (a+ b) = cos (a) cos (b)− sin (a) sin (b).
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γx (h) = E [xtxt−h]

=E

[(
q∑

k=1

vkcos (2πωkt) + uksin (2πωkt)

)(
q∑

l=1

vlcos (2πωl (t− h)) + ulsin (2πωl (t− h))

)]

=
q∑

k=1

q∑
l=1

E [(vkcos (2πωkt) + uksin (2πωkt)) (vlcos (2πωl (t− h)) + ulsin (2πωl (t− h)))]

=
q∑

k=1

q∑
l=1

(E [vkvl] cos (2πωkt) cos (2πωl (t− h)) + E [ukvl] sin (2πωkt) cos (2πωl (t− h)) +

E [vkul] cos (2πωkt) sin (2πωl (t− h)) + E [ukul] sin (2πωkt) sin (2πωl (t− h)))

=
q∑

k=1

E
[
v2

k

]
cos (2πωkt) cos (2πωk (t− h)) + E

[
u2

k

]
sin (2πωkt) sin (2πωk (t− h)) v1, . . . , vq , u1, . . . , vq independent

=
q∑

k=1

σ2
k (cos (2πωkt) cos (2πωk (t− h)) + sin (2πωkt) sin (2πωk (t− h))) E

[
v2

k

]
= E
[
u2

k

]
= σ2

k

=
q∑

k=1

σ2
k (cos (−2πωkt) cos (2πωk (t− h)) − sin (−2πωkt) sin (2πωk (t− h))) cos (a) = cos (−a),−sin (a) = sin (−a)

=
q∑

k=1

σ2
kcos (−2πωkt+ 2πωk (t− h)) cos (a+ b) = cos (a) cos (b) − sin (a) sin (b)

=
q∑

k=1

σ2
k

2. In this question, we’re going to examine the shape of the spectral density functions for several different
AR(p) models. I’m not aware of an R function that takes AR(p) parameters and returns the spectral
density, so we’ll do this by simulating many time series according to the same AR(p) model, computing
the scaled periodogram for each, and then averaging the scaled periodograms across all simulations.
We’re going to do this on the log scale, just because sometimes the shape of the scaled periodogram is
easier to examine on the log scale.

In class we computed the scaled periodogram of an observed time series x by hand. I have made a little R
function called scaled periodogram that does what we did in class.
scaled.periodogram <- function(x) {

n <- length(x)
# Get number of columns in our design matrix
Z <- matrix(nrow = n, ncol = n)

# First column is always the intercept!
Z[, 1] <- 1
for (i in 2:n) {

if (i%%2 == 0) {
Z[, i] <- cos(2*pi*floor(i/2)*1:n/n)

} else {
Z[, i] <- sin(2*pi*floor(i/2)*1:n/n)

}
}
linmod <- lm(x~Z-1)

# Let's record the coef magnitudes
m <- ifelse(n%%2 == 0, n/2, (n - 1)/2 + 1)
coef.mags <- numeric(m)
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for (i in 1:length(coef.mags)) {
if (i == 1) {

coef.mags[i] <- coef(linmod)[1]^2
} else if (i == length(coef.mags) & n%%2 == 0) {

coef.mags[i] <- coef(linmod)[length(coef(linmod))]^2
} else {

coef.mags[i] <- sum(coef(linmod)[1 + 2*(i - 2) + 1:2]^2)
}

}
return(list("coef.mags" = coef.mags, "freqs" = 0:(m - 1)/n, "Z" = Z))

}

(i) Consider an AR(1) model with φ1 = 0.5 and σ2
w = 1, and consider time series of lengths n = 25 and

n = 100. Simulate 1, 000 time series for each value of n according to this model, and record the scaled
periodogram for each.

(a) Make a pair of plots in a single plot window using par(mfrow = c(1, 2)) - one for each value of
n. For both plots, use the range (−20, 5) on the y-axis and (0, 0.5) on the x-axis. In each plot for a
single value of n, plot the average log scaled periodogram on against the frequency across all of the
simulations. To obtain the average log scaled periodogram, take the log of each scaled periodogram
using the log function and then average over all 1, 000 log scaled periodogram values that correspond
to the same frequency. On the same plot, add the log scaled periodograms against frequency for ten
randomly selected simulations.

pars <- list(c(0.5))
ns <- c(25, 100)
sim <- 1000
cm <- fr <- array(dim = c(length(ns), sim, max(ifelse(ns%%2 == 0, ns/2, (ns - 1)/2 + 1))))
for (n in 1:length(ns)) {

for (i in 1:sim) {
x <- arima.sim(n = ns[n], model = list("ar" = pars[[1]]))
sp <- scaled.periodogram(x)
cm[n, i, 1:length(sp$coef.mag)] <- sp$coef.mag
fr[n, i, 1:length(sp$coef.mag)] <- sp$freq

}
}
par(mfrow = c(1, 2))
for (n in 1:length(ns)) {

plot(fr, log(cm), type = "n", xlab = "Frequency", ylab = "Log Scaled Periodogram")
samp <- sample(1:sim, 10, replace = FALSE)
for (s in samp) {

lines(fr[n, 1, ], log(cm[n, s, ]), lty = 2, col = n)
}
lines(fr[n, 1, ], log(colMeans(cm[n, , ])), col = n, lty = 1, lwd = 2)
legend("bottomleft", col = n, lty = c(1, 2), lwd = c(2, 1),

legend = c("Average", "Selected"),
bty = "n", cex = 0.75)

}
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(b) Based on the average log scaled periodogram, does any specific frequency dominate the periodogram of
this AR(1) process? Answer with at most one sentence.

No, there is a small peak at a very low frequency but the average log scaled periodogram values do not vary
very much.

(c) In one sentence, when n gets bigger, do the log scaled periodograms become smoother?

No, it looks like the simulated periodograms are not clustering any more tightly around the average log scaled
periodogram as n gets bigger.

(d) Redo part (a) for an AR(1) model with φ1 = 0 and σ2
w = 1.

pars <- list(c(0))
ns <- c(25, 100)
sim <- 1000
cm <- fr <- array(dim = c(length(ns), sim, max(ifelse(ns%%2 == 0, ns/2, (ns - 1)/2 + 1))))
for (n in 1:length(ns)) {

for (i in 1:sim) {
x <- rnorm(ns[n])
sp <- scaled.periodogram(x)
cm[n, i, 1:length(sp$coef.mag)] <- sp$coef.mag
fr[n, i, 1:length(sp$coef.mag)] <- sp$freq

}
}
par(mfrow = c(1, 2))
for (n in 1:length(ns)) {

plot(fr, log(cm), type = "n", xlab = "Frequency", ylab = "Log Scaled Periodogram")
samp <- sample(1:sim, 10, replace = FALSE)
for (s in samp) {

lines(fr[n, 1, ], log(cm[n, s, ]), lty = which(s == samp) + 1, col = n)
}
lines(fr[n, 1, ], log(colMeans(cm[n, , ])), col = n, lty = 1, lwd = 2)
legend("bottomleft", col = n, lty = c(1, 2), lwd = c(2, 1),

legend = c("Average", "Selected"),
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bty = "n", cex = 0.75)
}
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(e) Describe the shape of the average log periodogram from (d) in one sentence.

The average log periodogram from (d) is constant when the frequency is greater than zero.

(f) Consider the following AR(p) models, all with σ2
w = 1.

i. p = 1, φ1 = 0.99
ii. p = 2, φ1 = 0.04, φ2 = 0.92
iii. p = 2, φ1 = 0.04, φ2 = −0.92
iv. p = 3, φ1 = 0.42, φ2 = −0.29, φ3 = 0.15

Set n = 100 and simulate 1, 000 time series according to each of the models (i)-(iv), and record the scaled
periodogram for each. Using the range (−6, 3) on the y-axis and (0, 0.5) on the x-axis, plot the average log
scaled periodogram on against the frequency across all of the simulations for each model.
pars <- list(c(0.99), c(0.04, 0.92), c(0.04, -0.92), c(0.42, -0.29, 0.15))
n <- 100
sim <- 1000
cm <- fr <- array(dim = c(length(pars), sim, ifelse(n%%2 == 0, n/2, (n - 1)/2 + 1)))
for (p in 1:length(pars)) {

for (i in 1:sim) {
x <- arima.sim(n = n, model = list("ar" = pars[[p]]))
sp <- scaled.periodogram(x)
cm[p, i, ] <- sp$coef.mag
fr[p, i, ] <- sp$freq

}
}
plot(apply(fr, c(1, 3), mean), log(apply(cm, c(1, 3), mean)), type = "n",

xlab = "Frequency", ylab = "Average Log Scaled Periodogram")
for (p in 1:dim(cm)[1]) {

lines(fr[p, 1, ], log(colMeans(cm[p, , ])), col = p, lty = 1)
}
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legend("topright", col = 1:dim(cm)[1], legend = c("i.", "ii.", "iii.", "iv."), lty = rep(1, 4))
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(g) In at most one sentence, comment on how the AR(p) parameters affect the shape of the periodogram
based on (f).

When the AR(p) model includes some positive large coefficients, the low-frequency variability contributes a
lot to the variability of x, and when the AR(p) model has at least one complex root, the periodogram may
be dominated by a single frequency.
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