
Homework 7 Solutions
Due: Thursday 4/18/19 by 12:00pm (noon)

Note - problems 2. and 3. will require use of the the MARSS package for R.

Grading Scheme:

• Maximum of 2 points for 1., determined as follows:
– 0 points for no solutions or R output only;
– 1 point if there are substantial mistakes and serious revisions needed for final project draft;
– 2 points if mostly or entirely correct and only minor revisions needed for final project draft.

• 1 point for correct or nearly correct answers to 2.a., and for 3.a.-c. (combined).
• Maximum of 3 points each for 2.a. and 3.b, determined as follows:

– 0 points for no solutions whatsoever or R output only;
– 1 point for an honest effort but very few correct answers;
– 2 points for mostly correct answers but some major mistakes;
– 3 points for one or fewer mistakes.

Your total score will be divided by 2, to make this homework weighted equally with the rest of the homeworks.
Solutions for problems 2. and 3. are given below in blue, since you will be asked to improve upon your
solution to 1. for your final project.

2. Understanding State Space Models

In this probem, we’re going to play around with the parameters of the state-space model a bit, building off
of the example of the varve data we saw in class. The varve data is available in the astsa package. We’ll
work with it on the log scale, because the variance of the observations appears to be increasing over time. In
class, we fit the following model to the data:

yt = axt + vt and xt = φxt−1 + wt,

where vt
i.i.d.∼ N

(
0, σ2

v

)
, wt

i.i.d.∼ N
(
0, σ2

w

)
, and x0 = µ.

library(astsa)
library(MARSS)

data("varve")
n <- length(varve)

y <- log(varve)

model <- list(
B=matrix("phi"), U=matrix(0), Q=matrix("sig.sq.w"),
Z=matrix("a"), A=matrix(0), R=matrix("sig.sq.v"),
x0=matrix("mu"), tinitx=0)

fit <- MARSS(c(y), model=model, method = "kem", silent=TRUE)
Get Kalman filter, predictor and smoother
kf <- MARSSkfss(fit)

The estimated coefficients were â = 0.9776, σ̂2
v = 0.1805, φ̂ = 0.999, σ̂2

w = 0.0133, and µ̂ = 3.5267.

1

For this problem, I would like you to plot the predictions, filter, and smoother for the following state-space
models:

i. Keeping â, φ̂, σ̂2
w, and µ̂ at their estimated values and setting σ2

v = 0.05.
ii. Keeping â, φ̂, σ̂2

w, and µ̂ at their estimated values and setting σ2
v = 0.5. iii.Keeping â, φ̂, σ̂2

v , and µ̂ at
their estimated values and setting σ2

w = 0.0001.
iii. Keeping â, φ̂, σ̂2

v , and µ̂ at their estimated values and setting σ2
w = 1.

(a) Make a plot with twelve panels using par(mfrow = c(4, 3)). In each panel, plot the first 50 observa-
tions from the data in gray.

• In the first column of panels, add solid black lines for the predictions of the states using the estimated
parameters and dashed black lines for the predictions of the states using the estimated parameters plus
and minus the corresponding standard errors.

• In the second column of panels, add solid black lines for the filtered values of the states using the
estimated parameters and dashed black lines for the filtered values of the states using the estimated
parameters plus and minus the corresponding standard errors.

• In the third column of panels, add solid black lines for the smoothed values of the states using the
estimated parameters and dashed black lines for the smoothed values of the states using the estimated
parameters plus and minus the corresponding standard errors.

• In the first row of panels, add lines for the the predictions, filtered values, and smoothed values from
model i.

• In the second row of panels, add lines for the the predictions, filtered values, and smoothed values from
model ii.

• In the third row of panels, add lines for the the predictions, filtered values, and smoothed values from
model iii.

• In the fourth row of panels, add lines for the the predictions, filtered values, and smoothed values from
model iv.

models <- list(
list(B=matrix(coef(fit)$B[1, 1]), U=matrix(0), Q=matrix(coef(fit)$Q[1, 1]),
Z=matrix(coef(fit)$Z[1, 1]), A=matrix(0), R=matrix(0.05),
x0=matrix(coef(fit)$x0[1, 1]), tinitx=0),
list(B=matrix(coef(fit)$B[1, 1]), U=matrix(0), Q=matrix(coef(fit)$Q[1, 1]),
Z=matrix(coef(fit)$Z[1, 1]), A=matrix(0), R=matrix(0.5),
x0=matrix(coef(fit)$x0[1, 1]), tinitx=0),
list(B=matrix(coef(fit)$B[1, 1]), U=matrix(0), Q=matrix(0.0001),
Z=matrix(coef(fit)$Z[1, 1]), A=matrix(0), R=matrix(coef(fit)$R[1, 1]),
x0=matrix(coef(fit)$x0[1, 1]), tinitx=0),

list(B=matrix(coef(fit)$B[1, 1]), U=matrix(0), Q=matrix(1),
Z=matrix(coef(fit)$Z[1, 1]), A=matrix(0), R=matrix(coef(fit)$R[1, 1]),
x0=matrix(coef(fit)$x0[1, 1]), tinitx=0))

sub <- 1:50

par(mfrow = c(4, 3))
par(mar = rep(2, 4))
for (mod in models) {

fit.mod <- MARSS(c(y), model=mod, method = "kem", silent=TRUE)
Get Kalman filter, predictor and smoother
kf.mod <- MARSSkfss(fit.mod)

plot(c(y)[sub],
main = "Kalman Predictions", xlab = "Time", ylab = "y",
col = "darkgray", type = "b", pch = 16, lty = 1)

2

lines(c(kf[["xtt1"]]), col = "black", lwd = 2)
lines(c(kf[["xtt1"]]) - c(sqrt(kf[["Vtt1"]])), col = "black", lwd = 2, lty = 3)
lines(c(kf[["xtt1"]]) + c(sqrt(kf[["Vtt1"]])), col = "black", lwd = 2, lty = 3)
lines(c(kf.mod[["xtt1"]]), col = "blue", lwd = 2)
lines(c(kf.mod[["xtt1"]]) - c(sqrt(kf.mod[["Vtt1"]])), col = "blue", lwd = 2, lty = 3)
lines(c(kf.mod[["xtt1"]]) + c(sqrt(kf.mod[["Vtt1"]])), col = "blue", lwd = 2, lty = 3)

plot(c(y)[sub],
main = "Kalman Filter", xlab = "Time", ylab = "y",
col = "darkgray", type = "b", pch = 16, lty = 1)

lines(c(kf[["xtt"]]), col = "black", lwd = 2)
lines(c(kf[["xtt"]]) - c(sqrt(kf[["Vtt"]])), col = "black", lwd = 2, lty = 3)
lines(c(kf.mod[["xtt"]]) + c(sqrt(kf[["Vtt"]])), col = "black", lwd = 2, lty = 3)
lines(c(kf.mod[["xtt"]]), col = "blue", lwd = 2)
lines(c(kf.mod[["xtt"]]) - c(sqrt(kf.mod[["Vtt"]])), col = "blue", lwd = 2, lty = 3)
lines(c(kf.mod[["xtt"]]) + c(sqrt(kf.mod[["Vtt"]])), col = "blue", lwd = 2, lty = 3)

plot(c(y)[sub], main = "Kalman Smoother", xlab = "Time", ylab = "y",
col = "darkgray", type = "b", pch = 16, lty = 1)

lines(c(fit$states), col = "black", lwd = 2)
lines(c(fit$states) - c(fit$states.se), col = "black", lwd = 2, lty = 3)
lines(c(fit$states) + c(fit$states.se), col = "black", lwd = 2, lty = 3)
lines(c(fit.mod$states), col = "blue", lwd = 2)
lines(c(fit.mod$states) - c(fit.mod$states.se), col = "blue", lwd = 2, lty = 3)
lines(c(fit.mod$states) + c(fit.mod$states.se), col = "blue", lwd = 2, lty = 3)

}

3

0 10 20 30 40 50

2.
5

3.
5

Kalman Predictions

Time

0 10 20 30 40 50

2.
5

3.
5

Kalman Filter

Time

y

0 10 20 30 40 50

2.
5

3.
5

Kalman Smoother

Time

y

0 10 20 30 40 50

2.
5

3.
5

Kalman Predictions

Time

0 10 20 30 40 50

2.
5

3.
5

Kalman Filter

Time

y
0 10 20 30 40 50

2.
5

3.
5

Kalman Smoother

Time

y

0 10 20 30 40 50

2.
5

3.
5

Kalman Predictions

Time

0 10 20 30 40 50

2.
5

3.
5

Kalman Filter

Time

y

0 10 20 30 40 50

2.
5

3.
5

Kalman Smoother

Time

y
0 10 20 30 40 50

2.
5

3.
5

Kalman Predictions

0 10 20 30 40 50

2.
5

3.
5

Kalman Filter

y

0 10 20 30 40 50
2.

5
3.

5

Kalman Smoother

y

(b) In at one sentence, explain how the value of σ2
v affects affects the conditional means and variances of

the states given the observed data.

Decreasing σ2
v makes the conditional means of the states more closely track the observed data, and it makes

the conditional variances of the states smaller.

(c) In at one sentence, explain how the value of σ2
w affects the conditional means and variances of the states

given the observed data.

Decreasing σ2
w makes the conditional means of the states vary more smoothly and less like the observed data,

and makes the conditional variances of the states smaller.

3. A State Space Model for the Chicken Data

In this problem, we’re going to further examine the use of the state-space model

yt = axt + vt and xt = φxt−1 + wt,

where vt
i.i.d.∼ N

(
0, σ2

v

)
, wt

i.i.d.∼ N
(
0, σ2

w

)
, and x0 = µ.

We will use the chicken data from the astsa package once more. A special case of this state-space model is
the ARIMA(1, 0, 0) model.

(a) Fit the state space model to the chicken data with a = 1 and σ2
v = 0, as well as an ARIMA(1, 0, 0)

model. You will need to use method="ML" when you run arima to fit this model. Compare the parameter
estimates. In at most one sentence, indicate whether or not the estimates of the remaining parameters
are the same and explain why or why not this is the case.

4

data("chicken")
n <- length(chicken)

y <- c(chicken[1:(n - 20)], rep(NA, 20))

model <- list(B=matrix("phi"), U=matrix(0), Q=matrix("sig.sq.w"),
Z=matrix(1), A=matrix(0), R=matrix(0),
x0=matrix("mu"), tinitx=0)

fit <- MARSS(c(y), model=model, method = "kem", silent=TRUE)

ar <- arima(c(na.omit(y)), order = c(1, 0, 0), method = "ML")

The estimates are not the same because these models are similar but not quite the same - no fixed initial
state is assumed by the ARIMA model.

(b) Fit the entire state space model with unknown a and σ2
v to the chicken data with the last 20 observations

removed. On a plot with the x-axis ranging from 2001 + 7/12 to 2016 + 6/12 and y-axis ranging from
60 to 130, plot:

• The observed chicken time series.
• Predicted chicken chicken prices from 2014 + 11/12 to 2016 + 6/12 based on the ARIMA(1, 0, 0) model.
• Predicted chicken prices from 2014 + 11/12 to 2016 + 6/12 based on the ARIMA(1, 0, 0) model plus

or minus one standard error.
• Forecasted chicken prices from 2014 + 11/12 to 2016 + 6/12 based on the state-space model.
• Forecasted chicken prices from 2014 + 11/12 to 2016 + 6/12 based on the state-space model plus or

minus one standard error.
model <- list(B=matrix("phi"), U=matrix(0), Q=matrix("sig.sq.w"),

Z=matrix("a"), A=matrix(0), R=matrix("sig.sq.v"),
x0=matrix("mu"), tinitx=0)

fit <- MARSS(c(y), model=model, method = "kem", silent = TRUE)
fit.bfgs <- MARSS(c(y), model=model, method = "BFGS",

inits = fit, silent = TRUE)
Get Kalman filter, predictor and smoother
kf <- MARSSkfss(fit.bfgs)

par(mfrow = c(1, 1))
plot(c(chicken), type = "l", col = "darkgray", main = "Kalman Smoother",

xlab = "Time", ylab = "y",
xlim = c(0, length(y)),
ylim = c(60, 130))

pred <- predict(ar, n.ahead = 20)
lines((n - 20 + 1):n, pred$pred)
lines((n - 20 + 1):n, pred$pred - qnorm(0.975)*pred$se,

lty = 3)
lines((n - 20 + 1):n, pred$pred + qnorm(0.975)*pred$se,

lty = 3)
lines((n - 20 + 1):n, (coef(fit)$Z[1, 1]*c(fit.bfgs$states))[(n - 20 + 1):n],

col = "purple", lwd = 2)
lines((n - 20 + 1):n, ((c(coef(fit)$Z[1, 1]*fit.bfgs$states) -

qnorm(0.975)*c(sqrt(coef(fit)$Z[1, 1]^2*fit.bfgs$states.se^2 +
coef(fit)$R[1, 1]))))[(n - 20 + 1):n],

col = "purple", lwd = 2, lty = 3)

5

lines((n - 20 + 1):n, ((c(coef(fit)$Z[1, 1]*c(fit.bfgs$states) +
qnorm(0.975)*c(sqrt(coef(fit)$Z[1, 1]^2*fit.bfgs$states.se^2 +

coef(fit)$R[1, 1])))))[(n - 20 + 1):n],
col = "purple", lwd = 2, lty = 3)

legend("topleft", col = c("black", "purple", "purple", "purple"),
lty = c(1, 1, 1, 2),
legend = c("ARIMA", "State-Space", "Forecasts", "95% Forecast Intervals"))

0 50 100 150

60
70

80
90

11
0

13
0

Kalman Smoother

Time

y

ARIMA
State−Space
Forecasts
95% Forecast Intervals

(c) In at most one sentence, indicate which model you prefer for the chicken data and explain why.

Any answer accompanied by sound reasoning would be accepted here. For instance:

• I would prefer the state-space model, because the forecasts reflect the overall trend of the time series
and the 95% intervals do contain most of the true values.

• I would prefer the ARIMA model, because the forecasts are more similar to the observed values.

6

	2. Understanding State Space Models
	3. A State Space Model for the Chicken Data

