
Homework 8 Solutions
Due: Wednesday 5/1/19 by 12:00pm (noon)

Note - problem 2. will require use of the the stochvol package for R.

Grading Scheme:

• Maximum of 2 points for 1., determined as follows:
– 0 points for no solutions or R output only;
– 1 point if there are substantial mistakes and serious revisions needed for final project draft;
– 2 points if mostly or entirely correct and only minor revisions needed for final project draft.

• Maximum of 3 points for problem 2., determined as follows:
– 0 points for no solutions whatsoever or R output only;
– 1 point for an honest effort but very few correct answers;
– 2 points for mostly correct answers but some major mistakes;
– 3 points for one or fewer mistakes.

1. Exploratory and State-Space Analysis of Project Data

For this problem, I’ll ask you to select a data set from the following possibilities:

• Anomaly
• Electricity
• Stocks
• Yields
• Air
• Beijing

(a) Give the name of the dataset you’ve chosen. You’ll have to stick with this dataset for the state-space
part of the final project. All but one of the datasets are multivariate. For this problem, I will ask you
to analyze the first time series in the dataset you’ve selected. For instance, the first time series in the
Anomaly data is given by Anomaly[, 1].

(b) Plot the raw data.

(c) All of the data sets have some type of “seasonal” aspect, i.e. they are measured quarterly, monthly,
or daily and may have quarter-of-the-year, month-of-the-year, or day-of-the-week effects, respectively.
What kind of seasonality might be present in the data you chose?

(d) Define an n × s matrix Z to capture seasonality, where s is the number of units of time per season
minus one. Note that you’ll have to transpose it when you pass it to the MARSS function(s). Fit four
linear state-space models to the raw data minus the last 20 observations using the MARSS package:

• i. yt = axt + vt, xt = φxt−1 + wt

• ii. yt = axt + γ′zt + vt, xt = φxt−1 + wt

• iii. yt = axt + vt, xt = φxt−1 + υ′zt + wt

• iv. yt = axt + γ′zt + vt, xt = φxt−1 + υ′zt + wt

Compute AIC for each, and indicate which model you would choose based on AIC alone.

(e) Plot the last 40 observations from the raw data, the forecasts of the last 20 observations under each
model, and 95% confidence intervals for each.
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https://github.com/maryclare/atsa/blob/master/content/data/Anomaly.RData
https://github.com/maryclare/atsa/blob/master/content/data/Electricity.RData
https://github.com/maryclare/atsa/blob/master/content/data/Stocks.RData
https://github.com/maryclare/atsa/blob/master/content/data/Yields.RData
https://github.com/maryclare/atsa/blob/master/content/data/Air.RData
https://github.com/maryclare/atsa/blob/master/content/data/Beijing.RData


(f) Compute the average squared forecast error for the last 20 observations under each of the four models.
Indicate which would you choose based on squared forecast error alone.

(g) In at most one sentence, indicate whether or not you would choose a model based on AIC or squared
forecast error and explain why.

2. Stochastic Volatility

On the second exam, we applied a GARCH(m, 0) model to the second differences of the demeaned gnp data.
We’re going to apply a stochastic volatility model to the same data. You’ll want to start with the following
code to load the packages we need and the data:
library(astsa)
library(stochvol)
data(gnp)
y <- (diff(gnp, d = 2) - mean(diff(gnp, d = 2)))
n <- length(y)

(a) Fit stochastic volatility model with the default prior specifications to y using the svsample function
three times for each of the following values of m, the number of simulated values of the states and
parameters drawn from the posterior distribution:

i. m = 100;
ii. m = 1000;
iii. m = 10000.

Make a plot with three panels, one for each value of m. In each panel, plot the estimates of the posterior
means for the latent states h for each run of svsample. You will have three lines per panel.
ms <- c(100, 1000, 10000)
times <- 3
par(mfrow = c(1, 3))
for (m in ms) {

for (t in 1:times) {
res <- svsample(y, draws = m)
if (t == 1) {

plot(colMeans(res$latent), type = "l", col = t,
ylab = expression(paste("E[", h[t], "|", y[1], ",...,", y[n], "]", sep = "")),
xlab = "t",
main = paste("m=", m, sep = ""))

} else {
lines(colMeans(res$latent), type = "l", col = t)

}
}

}

2



0 50 100 150 200

6.
5

7.
0

7.
5

8.
0

8.
5

m=100

t

E
[h

t|y
1,

...
,y

n]

0 50 100 150 200

6.
5

7.
0

7.
5

8.
0

8.
5

m=1000

t

E
[h

t|y
1,

...
,y

n]

0 50 100 150 200

6.
5

7.
0

7.
5

8.
0

8.
5

m=10000

t

E
[h

t|y
1,

...
,y

n]

(b) For this data, which value of m seems reasonable to use in practice? Answer in at most one sentence
and base your answer on your plots from (a).

I would use m = 10000, because that is certainly enough simulated values to get a good estimate of the
posterior means of the states. If you said that you would use m = 1000 and justified it based on computation
time, that is also ok.

(c) Using the value of m you argued for in (b), fit the stochastic volatility models to the data with the last
20 observations held out using the following priors:

i. Default priors for µh, φ and σ2
w;

ii. Default priors for φ and σ2
w, normal prior for µh with mean 0 and variance 1;

iii. Default priors φ and σ2
w, normal prior for µh with mean 0 and variance 1000000;

iv. Default priors for µh and σ2
w, beta prior for (φ+ 1) /2 with a0 = 1 and b0 = 1;

v. Default priors for µh and σ2
w, beta prior for (φ+ 1) /2 with a0 = 10 and b0 = 10;

vi. Default priors for µh and φ, gamma prior for σ2
w with shape 1/2 and rate 1/20.

vii. Default priors for µh and φ, gamma prior for σ2
w with shape 1/2 and rate 1/0.02.

Plot kernel density estimates of p (µh|y) from i.-iii. in the first panel, kernel density estimates of p (φ|y) from
i., iv-v. in the second panel, and p

(
σ2

w|y
)
from i., vi-vii. in the last panel. Kernel density estimates can

be computed using the density function in R applied to simulated values of the corresponding parameter
returned by svsample.
par(mfrow = c(1, 3))
res <- svsample(y[1:(n-20)], draws = 10000, priormu = c(0, 100))
plot(density(res$para[, 1]),

main = "", xlab = expression(mu[h]),
ylab = expression(paste("p(", mu[h], "|", y[1],

",...,", y[n], ")", sep =)),
xlim = c(-10, 20))

res <- svsample(y[1:(n-20)], draws = 10000, priormu = c(0, 1))
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lines(density(res$para[, 1]), col = 2)
res <- svsample(y[1:(n-20)], draws = 10000, priormu = c(0, 1000))
lines(density(res$para[, 1]), col = 3)
legend("topright", lty = c(1, 1, 1),

col = c(1, 2, 3), legend = c("i.", "ii.", "iii."))

res <- svsample(y[1:(n-20)], draws = 10000, priorphi = c(5, 1.5))
plot(density(res$para[, 2]), main = "", xlab = expression(phi),

ylab = expression(paste("p(", phi, "|", y[1],
",...,", y[n], ")", sep =)),

xlim = c(-1, 1),
ylim = c(0, 9))

res <- svsample(y[1:(n-20)], draws = 10000, priorphi = c(1, 1))
lines(density(res$para[, 2]), col = 2)
res <- svsample(y[1:(n-20)], draws = 10000, priorphi = c(10, 10))
lines(density(res$para[, 2]), col = 3)
legend("topright", lty = c(1, 1, 1),

col = c(1, 2, 3), legend = c("i.", "iv.", "v."))

res <- svsample(y[1:(n-20)], draws = 10000, priorsigma = 1)
plot(density(res$para[, 3]),

main = "", xlab = expression(sigma[w]),
ylab = expression(paste("p(", sigma[w], "|",

y[1], ",...,", y[n], ")",
sep =)),

ylim = c(0, 7))
res <- svsample(y[1:(n-20)], draws = 10000, priorsigma = 10)
lines(density(res$para[, 3]), col = 2)
res <- svsample(y[1:(n-20)], draws = 10000, priorsigma = 0.01)
lines(density(res$para[, 3]), col = 3)
legend("topright", lty = c(1, 1, 1),

col = c(1, 2, 3), legend = c("i.", "vi.", "vii."))
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(d) Give the average squared forecast error for the last 20 observations for all of the models fit in (c) in a
table. For your forecasts, use the average simulated value of each future yn+k, which can be obtained
using the the predict function.

mses <- c()
draws <- 10000
res <- svsample(y[1:(n-20)], draws = draws)
pred <- predict(res, 20)
mses <- c(mses, mean((y[(n - 20 + 1):n] - colMeans(pred$y))^2))
res <- svsample(y, draws = draws, priormu = c(0, 1))
pred <- predict(res, 20)
mses <- c(mses, mean((y[(n - 20 + 1):n] - colMeans(pred$y))^2))
res <- svsample(y, draws = draws, priormu = c(0, 10000))
pred <- predict(res, 20)
mses <- c(mses, mean((y[(n - 20 + 1):n] - colMeans(pred$y))^2))

res <- svsample(y, draws = draws, priorphi = c(1, 1))
pred <- predict(res, 20)
mses <- c(mses, mean((y[(n - 20 + 1):n] - colMeans(pred$y))^2))
res <- svsample(y, draws = draws, priorphi = c(10, 10))
pred <- predict(res, 20)
mses <- c(mses, mean((y[(n - 20 + 1):n] - colMeans(pred$y))^2))

res <- svsample(y, draws = draws, priorsigma = 10)
pred <- predict(res, 20)
mses <- c(mses, mean((y[(n - 20 + 1):n] - colMeans(pred$y))^2))
res <- svsample(y, draws = draws, priorsigma = 0.01)
pred <- predict(res, 20)
mses <- c(mses, mean((y[(n - 20 + 1):n] - colMeans(pred$y))^2))
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Model Average MSE
i. 4651.266
ii. 4689.445
iii. 4669.992
iv. 4629.529
v. 4661.115
vi. 4636.418
vii. 4622.868

Full credit was given to students who got similar but not exactly the same numbers here - because these are
approximations computed from simulations, they may differ a bit depending on the seed used (which means
we should have used even more simulated values).

(e) Based on what you observe (c) and (d), explain in one sentence which prior specification(s) you prefer.
You don’t have to choose a single one, but you should comment on whether or not any seem like
especially good or bad choices.

I would prefer the prior specifications used in models i., iii., iv., and vi. because they are uninformative (have
high variance), and give posterior distributions for the parameters that reflect the data well, and I would not
use the forecast mean squared error to compare models because they are all very large and indicate that the
stochastic volatility model does not help us forecast values of yt, regardless of which priors are chosen.
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