
Introduction and Review

May 1, 2019

The material in this set of notes is based on Chapter 2 of S&S.

Notation

• E[x] refers to the expectation of x;

• V[x] refers to the variance of x;

• Z refers to the set of all positive and negative integers, Z = {0,±1,±2, . . . };

• Bolded lowercase letters denote column vectors;

• Bolded uppercase letters denote matrices;

• x ∼ N (µ, σ2) indicates that x is normally distributed with mean µ and variance σ2;

– Another way of writing this is x = σv + µ, where v ∼ N (0, 1). I will sometimes

use this notation to describe the distribution of x.

• x ∼ Tk indicates that x is central t-distributed with k degrees of freedom;

• x ∼ χ2
k indicates that x is chi-square distributed with k degrees of freedom;

• x ∼ Fk,j indicates that x is central F -distributed with k and j degrees of freedom.
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• ||x||22 =
∑n

i=1 x
2
i ;

• x ≈ y denotes that x is approximately equal to y.

Basic Idea!

Most (univariate) time series analysis problems boil down to observing an n × 1 vector

x = (x1, . . . , xn) = µx + w, where µx is a fixed but unknown mean and w are mean zero

random errors, and:

• Estimating µx;

• Predicting future values xn+1, . . . , xn+k.

Time series analysis problems differ from classical statistical problems because elements of x

are ordered in time. Several examples of time series data and problems are given in Chapter

1 of S&S, pages 4-11.

Because elements of x are ordered in time, consecutive elements of x may be correlated

and classical statistical methods may not work well. This is easiest to see via example.

Suppose we assume µx,t = µx for all t = 1, . . . , n, and we are interested in estimating µx.

Ignoring the time series aspect of x, we assume wj are independent and identically distributed

with known variance σ2
w. The classical approach would be to compute a point estimate of

µx, µ̂x =
∑n

t=1 xt/n and corresponding standard error, σ2
w/n. Is this accurate?

The classical approach gives a incorrect standard error if elements of x are correlated.

What would be the correct standard error?

E
[
(µ̂x − µx)2

]
=E

( n∑
t=1

xt − µx

)2

/n2


=σ2

w/n+
n∑

t=1

n∑
t′=1,t′ 6=t

E [(xt − µx) (xt′ − µx)] /n2.
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The correct standard error depends on covariances of elements of x,

E [(xt − µx) (xt′ − µx)] = E [wtwt′ ] ,

which may be nonzero if elements of x are ordered in time!

Regression Review (S&S 2.1-2.2)

Many methods for time series analysis build on linear regression. We perform linear

regression when we are interested in expressing an n × 1 response vector x as a linear

function of q n × 1 covariate vectors z1, . . . ,zq, i.e. we want to find regression coefficients

β1, . . . , βq such that x ≈ β1z1 + · · · + βqzq. If x is a time series, then covariates might

include:

• Indicators for distinct time periods different elements of x belong to;

• A vector t, where ti is the time xi was observed or the order of xi in the sequence;

• Nonlinear functions of elements of t, e.g. zij = sin (t) for some j ∈ {1, . . . , q};

• Lagged values of x;

• Lagged values of a different but related time series.

We will very rarely be able to describe x as an exactly linear function of z1, . . . ,zq.

Instead, we try to find the “best” way of writing x as a nearly linear function of z1, . . . ,zq

by computing the regression coefficients β that solve:

minβ ||x− β1z1 − · · · − βqzq||22 . (1)

This is easier to express concisely in matrix form. Letting Z = [z1, . . . ,zq] be the n× q

matrix of regression coefficients, β equivalently solves:

minβ ||x−Zβ||22 . (2)
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We refer to the quantity ||x−Zβ||22 as the residual sum of squares (RSS), as it

measures how much of the variability of x remains after subtracting off a linear function of

the covariates. We can minimize (2) by differentiating; the minimizing value β̂ will satisfy:

Z ′Zβ̂ −Z ′x = 0 =⇒ Z ′Zβ̂ = Z ′x.

If the matrix Z is full rank with rank q, then the minimizing value is

β̂ = (Z ′Z)
−1
Z ′x. (3)

If we want to say more about β̂, we need to make some more assumptions. First, note

that we can always decompose the observed response x into a linear part Zβ and a remainder

w:

x = Zβ +w. (4)

If we assume:

• E [w] = 0, then β̂ is unbiased, i.e. E
[
β̂
]

= β.

• wj
i.i.d.∼ N (0, σ2

w), then:

(?) β̂ is the maximum likelihood estimator of β;

(∗) β̂ ∼ normal
(
β, σ2

w (Z ′Z)
−1
)

;

(†) x−Zβ̂ ∼ normal
(
0, σ2

w

(
In −Z (Z ′Z)

−1
Z ′
))

;

(◦) β̂ and x−Zβ̂ are independent.

Time series methods rely extensively on likelihood based inference, so we pause to derive

(?). If wj
i.i.d.∼ normal (0, σ2

w) then rearranging (4) gives xi − z′iβ
i.i.d.∼ normal (0, σ2

w), where

zi is the i-th row of Z. This yields the likelihood:

l
(
x|Z,β, σ2

w

)
=

n∏
i=1

1√
2πσ2

w

exp

{
− 1

2σ2
w

||x−Zβ||22
}
.

4



Finding the value of β that maximizes the likelihood is equivalent to finding the value of β

that minimizes the negative log likelihood, which corresponds to a constant plus the residual

sum of squares (2).

(∗), (†), and (◦) are very useful; they allow us not only to compute standard errors and

confidence intervals for β̂ but also to test the null hypothesis that βi is exactly equal to a

specific value or that a subset of q − q1 elements β−1 =
(
βt1 , . . . , βtq−q1

)
are jointly exactly

equal to 0.

Standard practice for constructing standard errors and confidence intervals is to use (∗),

plugging in an unbiased estimator of the variance:

s2w =

∣∣∣∣∣∣x−Zβ̂∣∣∣∣∣∣2
2

n− q
. (5)

Note that this is not the maximum likelihood estimate of σ2
w - the maximum likelihood

estimator σ̂2
w =

∣∣∣∣∣∣x−Zβ̂∣∣∣∣∣∣2
2
/n is biased.

It follows from (∗), (†), and (◦) that

tn−q =
β̂i − βi

sw

√
(Z ′Z)

−1
ii

∼ Tn−q. (6)

This gives us a way of testing the null hypothesis that βi is exactly equal to a specific value

because it tells us the approximate distribution of β̂i for specific values of βi. We call such

tests t-tests.

Similarly, letting Z1 =
[
zt1 , . . . ,ztq1

]
be the design matrix containing the q1 columns

corresponding to elements of β1 and letting β̂1 be the linear regression estimate of β1 from

regressing x on just the q1 columns of Z contained in Z1, it follows from (∗), (†), and (◦)

that

Fq−q1,n−q =


∣∣∣∣∣∣x−Z1β̂1

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣x−Zβ̂∣∣∣∣∣∣2

2∣∣∣∣∣∣x−Zβ̂∣∣∣∣∣∣2
2

( n− q
q − q1

)
∼ Fq−q1,n−q. (7)

This gives us a way of testing the null hypothesis that the q− q1 elements of β−1 are jointly
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exactly equal to 0 by giving us an approximate distribution of Fq−q1,n−q under the null. We

call such tests F -tests.

F -tests are very useful for model selection, i.e. for choosing the covariates to include in

our model. Model selection is especially relevant in linear regression methods for time series

analysis, e.g. we may need to decide which lagged values of x to include as covariates. Letting

Zk refer to a matrix containing k covariates and βk and β̂k the corresponding regression

coefficients and their linear regression estimates, several popular methods for performing

model selection when performing linear regression are:

(∗) Perform an F -test comparing nested models with k and k′ covariates.

(?) Compute Akaike’s Information Criterion (AIC)

AIC = ln


∣∣∣∣∣∣x−Zkβ̂k

∣∣∣∣∣∣2
2

n

+
n+ 2k

n
(8)

for models with k and k′ covariates, and choose the model with the lower AIC value.

(?) Compute AIC, Bias Corrected (AICc)

AICc = ln


∣∣∣∣∣∣x−Zkβ̂k

∣∣∣∣∣∣2
2

n

+
n+ k

n− k − 2
(9)

for models with k and k′ covariates, and choose the model with the lower AICc value.

(?) Compute Schwarz’s/Bayesian Information Criterion (SIC/BIC)

SIC = ln


∣∣∣∣∣∣x−Zkβ̂k

∣∣∣∣∣∣2
2

n

+
klog (n)

n
(10)

for models with k and k′ covariates, and choose the model with the lower SIC value.

Note that (∗) requires that the two models be nested, i.e. the columns in Zk must be a subset

of the columns in Zk′ or vice versa. The procedures denoted with (?) are not. Whether AIC,
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AICc, or BIC is most appropriate for a given problem is problem-specific; AICc can perform

better than AIC when n is relatively small, and SIC/BIC can perform better than AIC when

the number of covariates k is relatively large.
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