Introduction and Review

May 1, 2019

The material in this set of notes is based on Chapter 2 of $\mathrm{S} \& \mathrm{~S}$.

Notation

- $\mathbb{E}[x]$ refers to the expectation of x;
- $\mathbb{V}[x]$ refers to the variance of x;
- \mathbb{Z} refers to the set of all positive and negative integers, $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\} ;$
- Bolded lowercase letters denote column vectors;
- Bolded uppercase letters denote matrices;
- $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ indicates that x is normally distributed with mean μ and variance σ^{2};
- Another way of writing this is $x=\sigma v+\mu$, where $v \sim \mathcal{N}(0,1)$. I will sometimes use this notation to describe the distribution of x.
- $x \sim \mathcal{T}_{k}$ indicates that x is central t-distributed with k degrees of freedom;
- $x \sim \chi_{k}^{2}$ indicates that x is chi-square distributed with k degrees of freedom;
- $x \sim \mathcal{F}_{k, j}$ indicates that x is central F-distributed with k and j degrees of freedom.
- $\|\boldsymbol{x}\|_{2}^{2}=\sum_{i=1}^{n} x_{i}^{2}$;
- $x \approx y$ denotes that x is approximately equal to y.

Basic Idea!

Most (univariate) time series analysis problems boil down to observing an $n \times 1$ vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)=\boldsymbol{\mu}_{x}+\boldsymbol{w}$, where $\boldsymbol{\mu}_{x}$ is a fixed but unknown mean and \boldsymbol{w} are mean zero random errors, and:

- Estimating $\boldsymbol{\mu}_{x}$;

- Predicting future values x_{n+1}, \ldots, x_{n+k}.

Time series analysis problems differ from classical statistical problems because elements of \boldsymbol{x} are ordered in time. Several examples of time series data and problems are given in Chapter 1 of S\&S, pages 4-11.

Because elements of \boldsymbol{x} are ordered in time, consecutive elements of \boldsymbol{x} may be correlated and classical statistical methods may not work well. This is easiest to see via example. Suppose we assume $\mu_{x, t}=\mu_{x}$ for all $t=1, \ldots, n$, and we are interested in estimating μ_{x}. Ignoring the time series aspect of \boldsymbol{x}, we assume w_{j} are independent and identically distributed with known variance σ_{w}^{2}. The classical approach would be to compute a point estimate of $\mu_{x}, \hat{\mu}_{x}=\sum_{t=1}^{n} x_{t} / n$ and corresponding standard error, σ_{w}^{2} / n. Is this accurate?

The classical approach gives a incorrect standard error if elements of \boldsymbol{x} are correlated. What would be the correct standard error?

$$
\begin{aligned}
\mathbb{E}\left[\left(\hat{\mu}_{x}-\mu_{x}\right)^{2}\right] & =\mathbb{E}\left[\left(\sum_{t=1}^{n} x_{t}-\mu_{x}\right)^{2} / n^{2}\right] \\
& =\sigma_{w}^{2} / n+\sum_{t=1}^{n} \sum_{t^{\prime}=1, t^{\prime} \neq t}^{n} \mathbb{E}\left[\left(x_{t}-\mu_{x}\right)\left(x_{t^{\prime}}-\mu_{x}\right)\right] / n^{2} .
\end{aligned}
$$

The correct standard error depends on covariances of elements of \boldsymbol{x},

$$
\mathbb{E}\left[\left(x_{t}-\mu_{x}\right)\left(x_{t^{\prime}}-\mu_{x}\right)\right]=\mathbb{E}\left[w_{t} w_{t^{\prime}}\right],
$$

which may be nonzero if elements of \boldsymbol{x} are ordered in time!

Regression Review (S\&S 2.1-2.2)

Many methods for time series analysis build on linear regression. We perform linear regression when we are interested in expressing an $n \times 1$ response vector \boldsymbol{x} as a linear function of $q n \times 1$ covariate vectors $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{q}$, i.e. we want to find regression coefficients $\beta_{1}, \ldots, \beta_{q}$ such that $\boldsymbol{x} \approx \beta_{1} \boldsymbol{z}_{1}+\cdots+\beta_{q} \boldsymbol{z}_{q}$. If \boldsymbol{x} is a time series, then covariates might include:

- Indicators for distinct time periods different elements of \boldsymbol{x} belong to;
- A vector \boldsymbol{t}, where t_{i} is the time x_{i} was observed or the order of x_{i} in the sequence;
- Nonlinear functions of elements of \boldsymbol{t}, e.g. $z_{i j}=\sin (t)$ for some $j \in\{1, \ldots, q\}$;
- Lagged values of \boldsymbol{x};
- Lagged values of a different but related time series.

We will very rarely be able to describe \boldsymbol{x} as an exactly linear function of $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{q}$. Instead, we try to find the "best" way of writing \boldsymbol{x} as a nearly linear function of $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{q}$ by computing the regression coefficients $\boldsymbol{\beta}$ that solve:

$$
\begin{equation*}
\min _{\boldsymbol{\beta}}\left\|\boldsymbol{x}-\beta_{1} \boldsymbol{z}_{1}-\cdots-\beta_{q} \boldsymbol{z}_{q}\right\|_{2}^{2} . \tag{1}
\end{equation*}
$$

This is easier to express concisely in matrix form. Letting $\boldsymbol{Z}=\left[\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{q}\right]$ be the $n \times q$ matrix of regression coefficients, $\boldsymbol{\beta}$ equivalently solves:

$$
\begin{equation*}
\min _{\boldsymbol{\beta}}\|\boldsymbol{x}-\boldsymbol{Z} \boldsymbol{\beta}\|_{2}^{2} . \tag{2}
\end{equation*}
$$

We refer to the quantity $\|\boldsymbol{x}-\boldsymbol{Z} \boldsymbol{\beta}\|_{2}^{2}$ as the residual sum of squares (RSS), as it measures how much of the variability of \boldsymbol{x} remains after subtracting off a linear function of the covariates. We can minimize (2) by differentiating; the minimizing value $\hat{\boldsymbol{\beta}}$ will satisfy:

$$
\boldsymbol{Z}^{\prime} \boldsymbol{Z} \hat{\boldsymbol{\beta}}-\boldsymbol{Z}^{\prime} \boldsymbol{x}=0 \Longrightarrow \boldsymbol{Z}^{\prime} \boldsymbol{Z} \hat{\boldsymbol{\beta}}=\boldsymbol{Z}^{\prime} \boldsymbol{x}
$$

If the matrix \boldsymbol{Z} is full rank with $\operatorname{rank} q$, then the minimizing value is

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{Z}^{\prime} \boldsymbol{Z}\right)^{-1} \boldsymbol{Z}^{\prime} \boldsymbol{x} \tag{3}
\end{equation*}
$$

If we want to say more about $\hat{\boldsymbol{\beta}}$, we need to make some more assumptions. First, note that we can always decompose the observed response \boldsymbol{x} into a linear part $\boldsymbol{Z} \boldsymbol{\beta}$ and a remainder \boldsymbol{w} :

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{Z} \boldsymbol{\beta}+\boldsymbol{w} \tag{4}
\end{equation*}
$$

If we assume:

- $\mathbb{E}[\boldsymbol{w}]=\mathbf{0}$, then $\hat{\boldsymbol{\beta}}$ is unbiased, i.e. $\mathbb{E}[\hat{\boldsymbol{\beta}}]=\boldsymbol{\beta}$.
- $w_{j} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma_{w}^{2}\right)$, then:
($\star) \hat{\boldsymbol{\beta}}$ is the maximum likelihood estimator of $\boldsymbol{\beta}$;
$(*) \hat{\boldsymbol{\beta}} \sim \operatorname{normal}\left(\boldsymbol{\beta}, \sigma_{w}^{2}\left(\boldsymbol{Z}^{\prime} \boldsymbol{Z}\right)^{-1}\right)$;
(†) $\boldsymbol{x}-\boldsymbol{Z} \hat{\boldsymbol{\beta}} \sim \operatorname{normal}\left(\mathbf{0}, \sigma_{w}^{2}\left(\boldsymbol{I}_{n}-\boldsymbol{Z}\left(\boldsymbol{Z}^{\prime} \boldsymbol{Z}\right)^{-1} \boldsymbol{Z}^{\prime}\right)\right)$;
(০) $\hat{\boldsymbol{\beta}}$ and $\boldsymbol{x}-\boldsymbol{Z} \hat{\boldsymbol{\beta}}$ are independent.

Time series methods rely extensively on likelihood based inference, so we pause to derive (\star). If $w_{j} \stackrel{i . i . d .}{\sim}$ normal $\left(0, \sigma_{w}^{2}\right)$ then rearranging (4) gives $\boldsymbol{x}_{i}-\boldsymbol{z}_{i}^{\prime} \boldsymbol{\beta} \stackrel{i . i . d .}{\sim}$ normal $\left(0, \sigma_{w}^{2}\right)$, where \boldsymbol{z}_{i} is the i-th row of \boldsymbol{Z}. This yields the likelihood:

$$
l\left(\boldsymbol{x} \mid \boldsymbol{Z}, \boldsymbol{\beta}, \sigma_{w}^{2}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma_{w}^{2}}} \exp \left\{-\frac{1}{2 \sigma_{w}^{2}}\|\boldsymbol{x}-\boldsymbol{Z} \boldsymbol{\beta}\|_{2}^{2}\right\}
$$

Finding the value of $\boldsymbol{\beta}$ that maximizes the likelihood is equivalent to finding the value of $\boldsymbol{\beta}$ that minimizes the negative log likelihood, which corresponds to a constant plus the residual sum of squares (2).
$(*),(\dagger)$, and (\circ) are very useful; they allow us not only to compute standard errors and confidence intervals for $\hat{\boldsymbol{\beta}}$ but also to test the null hypothesis that β_{i} is exactly equal to a specific value or that a subset of $q-q_{1}$ elements $\boldsymbol{\beta}_{-1}=\left(\beta_{t_{1}}, \ldots, \beta_{t_{q-q_{1}}}\right)$ are jointly exactly equal to $\mathbf{0}$.

Standard practice for constructing standard errors and confidence intervals is to use (*), plugging in an unbiased estimator of the variance:

$$
\begin{equation*}
s_{w}^{2}=\frac{\|\boldsymbol{x}-\boldsymbol{Z} \hat{\boldsymbol{\beta}}\|_{2}^{2}}{n-q} \tag{5}
\end{equation*}
$$

Note that this is not the maximum likelihood estimate of σ_{w}^{2} - the maximum likelihood estimator $\hat{\sigma}_{w}^{2}=\|\boldsymbol{x}-\boldsymbol{Z} \hat{\boldsymbol{\beta}}\|_{2}^{2} / n$ is biased.

It follows from $(*),(\dagger)$, and (०) that

$$
\begin{equation*}
t_{n-q}=\frac{\hat{\beta}_{i}-\beta_{i}}{s_{w} \sqrt{\left(\boldsymbol{Z}^{\prime} \boldsymbol{Z}\right)_{i i}^{-1}}} \sim \mathcal{T}_{n-q} \tag{6}
\end{equation*}
$$

This gives us a way of testing the null hypothesis that β_{i} is exactly equal to a specific value because it tells us the approximate distribution of $\hat{\beta}_{i}$ for specific values of β_{i}. We call such tests \boldsymbol{t}-tests.

Similarly, letting $\boldsymbol{Z}_{1}=\left[\boldsymbol{z}_{t_{1}}, \ldots, \boldsymbol{z}_{t_{q_{1}}}\right]$ be the design matrix containing the q_{1} columns corresponding to elements of $\boldsymbol{\beta}_{1}$ and letting $\hat{\boldsymbol{\beta}}_{1}$ be the linear regression estimate of $\boldsymbol{\beta}_{1}$ from regressing \boldsymbol{x} on just the q_{1} columns of \boldsymbol{Z} contained in \boldsymbol{Z}_{1}, it follows from $(*),(\dagger)$, and (०) that

$$
\begin{equation*}
F_{q-q_{1}, n-q}=\left(\frac{\left\|\boldsymbol{x}-\boldsymbol{Z}_{1} \hat{\boldsymbol{\beta}}_{1}\right\|_{2}^{2}-\|\boldsymbol{x}-\boldsymbol{Z} \hat{\boldsymbol{\beta}}\|_{2}^{2}}{\|\boldsymbol{x}-\boldsymbol{Z} \hat{\boldsymbol{\beta}}\|_{2}^{2}}\right)\left(\frac{n-q}{q-q_{1}}\right) \sim \mathcal{F}_{q-q_{1}, n-q} \tag{7}
\end{equation*}
$$

This gives us a way of testing the null hypothesis that the $q-q_{1}$ elements of $\boldsymbol{\beta}_{-1}$ are jointly
exactly equal to $\mathbf{0}$ by giving us an approximate distribution of $F_{q-q_{1}, n-q}$ under the null. We call such tests \boldsymbol{F}-tests.
F-tests are very useful for model selection, i.e. for choosing the covariates to include in our model. Model selection is especially relevant in linear regression methods for time series analysis, e.g. we may need to decide which lagged values of \boldsymbol{x} to include as covariates. Letting \boldsymbol{Z}_{k} refer to a matrix containing k covariates and $\boldsymbol{\beta}_{k}$ and $\hat{\boldsymbol{\beta}}_{k}$ the corresponding regression coefficients and their linear regression estimates, several popular methods for performing model selection when performing linear regression are:
(*) Perform an F-test comparing nested models with k and k^{\prime} covariates.
(*) Compute Akaike's Information Criterion (AIC)

$$
\begin{equation*}
A I C=\ln \left(\frac{\left\|\boldsymbol{x}-\boldsymbol{Z}_{k} \hat{\boldsymbol{\beta}}_{k}\right\|_{2}^{2}}{n}\right)+\frac{n+2 k}{n} \tag{8}
\end{equation*}
$$

for models with k and k^{\prime} covariates, and choose the model with the lower AIC value.
(\star) Compute AIC, Bias Corrected (AICc)

$$
\begin{equation*}
A I C c=\ln \left(\frac{\left\|\boldsymbol{x}-\boldsymbol{Z}_{k} \hat{\boldsymbol{\beta}}_{k}\right\|_{2}^{2}}{n}\right)+\frac{n+k}{n-k-2} \tag{9}
\end{equation*}
$$

for models with k and k^{\prime} covariates, and choose the model with the lower AICc value.
(\star) Compute Schwarz's/Bayesian Information Criterion (SIC/BIC)

$$
\begin{equation*}
S I C=\ln \left(\frac{\left\|\boldsymbol{x}-\boldsymbol{Z}_{k} \hat{\boldsymbol{\beta}}_{k}\right\|_{2}^{2}}{n}\right)+\frac{k \log (n)}{n} \tag{10}
\end{equation*}
$$

for models with k and k^{\prime} covariates, and choose the model with the lower SIC value.

Note that $(*)$ requires that the two models be nested, i.e. the columns in \boldsymbol{Z}_{k} must be a subset of the columns in $\boldsymbol{Z}_{k^{\prime}}$ or vice versa. The procedures denoted with (\star) are not. Whether AIC,

AICc , or BIC is most appropriate for a given problem is problem-specific; AICc can perform better than AIC when n is relatively small, and SIC/BIC can perform better than AIC when the number of covariates k is relatively large.

