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The material in this set of notes is based on S&S 1.1-1.6.

Suppose we observe an n X 1 vector € = (z1,...,x,) = p, + w, where p_ is a fixed but
unknown mean, w are random errors and elements of  are ordered in time. We will refer
to & as a time series, although the sequence of elements can also be called a stochastic
process.

The joint distribution function of x is
F(c,...,co)=Pr1<c1y...,x0 < ).

Often, this will be difficult to write out and work with, so it does not provide a useful means

of characterizing a time series . Instead, we often characterize a time series @ via its:

e Mean Function: y,; = E[z,] = [*°_xfi(x)dz, where f(z) is the marginal density of

x¢ having integrated out all other elements of .
e Autocovariance Function: v,(s,t) = E[(xs — pzs)(x: — pz)] for all s and ¢.
— When s = t, gives the variance 7, (s, s) = V]x;].
e Autocorrelation Function: p,(s,t) = (s, t)/1/7(s, s)7(t,t) for all s and t.

Without further assumptions, this is still an unwieldy way to characterize a time series

because the mean function depends on ¢ and the autocovariance and autocorrelation func-



tions depend on both s and ¢. To simplify things further, we often assume that the time

series is either:

e Strongly Stationary: The distribution of any subset of k elements of (xy,, ...,y ) is

exactly the same as the distribution of the shifted set of k elements (24,44, - .., Tt,4n)-

— The mean function i, does not depend on t: . = E[zy] = Elxi1h] = flattn-

— The autocovariance function 7,(s,t) depends on s and ¢ only through their abso-

lute difference h = |s — t|:

’7(8 + h7 8) :]E[(xs-i-h - /vbw)(xs - ,U%)]
:]E[(xh - Ma:)(xo - /‘L.I)]

:/7<h70)'

e Weakly Stationary: The second moments of z; are finite, i.e. E[z?] < oo for
all ¢, the mean function is constant and does not depend on time, p,; = p,, and
the autocovariance function ~,(s,t) depends on s and ¢ only through their absolute

difference h = |s — t|.

Note that although strong stationarity implies weak stationarity, the reverse does not hold.
Strong stationarity is usually too strict to be a reasonable assumption, so from here on out
we will call a time series stationary if it is weakly stationary.

When a time series is stationary, its autocovariance and autocorrelation functions can be
written as functions of a single variable h. For this reason, we will drop the second arguments
of the autocovariance and autocorrelation functions when a time series is stationary, writing
Yo (h) =72 (h,0) and py (h) = ps (h,0).

When we observe a time series @, we do not know the mean, autocovariance, or auto-
correlation functions a priori - we need to estimate them. When x is stationary we can

compute:



e The sample mean function:
ﬂx:E:th/n. (1)
t=1

e The sample autocovariance function:

1 n—nh

G (h) = = 3 (s — ) (00— ), 2)

t=1

with 4, (—=h) =4, (h) for h=0,1,...,n— 1.

— We divide by n and not n — h to ensure that the sample variance of a sum of
elements of  computed from the n x n sample autocovariance matrix with entries

4 (i — j) will always be nonnegative.

— This is a biased estimate of v, (h).

e The sample autocorrelation function:

pa (h) = - (3)

When we examine a sample autocorrelation function, it is natural to ask how different
our estimates of the sample autocorrelation are from what we would might expect if  were
a white noise time series with no autocorrelation at all, i.e. if p, (h) = 0 for all A # 0. We

can get a handle on this using the following result:

If £ = p, +w where g, = 0 and w; iifl'./\/’((),ai) fori =1,...n, then p, (h) =~ v/\/n,
for h=1,... H, where v ~ N (0,1) and H is fixed but arbitrary.

This result allows us to perform an approximate test of the null hypothesis that p, (h) = 0

for any h > 1.



