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The material in this set of notes is based on S&S 1.1-1.6.

Suppose we observe an n× 1 vector x = (x1, . . . , xn) = µx +w, where µx is a fixed but

unknown mean, w are random errors and elements of x are ordered in time. We will refer

to x as a time series, although the sequence of elements can also be called a stochastic

process.

The joint distribution function of x is

F (c1, . . . , cn) = P (x1 ≤ c1, . . . , xn ≤ cn) .

Often, this will be difficult to write out and work with, so it does not provide a useful means

of characterizing a time series x. Instead, we often characterize a time series x via its:

• Mean Function: µx,t = E[xt] =
∫∞
−∞ xft(x)dx, where ft(x) is the marginal density of

xt having integrated out all other elements of x.

• Autocovariance Function: γx(s, t) = E[(xs − µx,s)(xt − µx,t)] for all s and t.

– When s = t, gives the variance γx(s, s) = V[xs].

• Autocorrelation Function: ρx(s, t) = γ(s, t)/
√
γ(s, s)γ(t, t) for all s and t.

Without further assumptions, this is still an unwieldy way to characterize a time series

because the mean function depends on t and the autocovariance and autocorrelation func-
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tions depend on both s and t. To simplify things further, we often assume that the time

series is either:

• Strongly Stationary: The distribution of any subset of k elements of (xt1 , . . . , xtk) is

exactly the same as the distribution of the shifted set of k elements (xt1+h, . . . , xtk+h).

– The mean function µx,t does not depend on t: µx,t = E[xt] = E[xt+h] = µx,t+h.

– The autocovariance function γx(s, t) depends on s and t only through their abso-

lute difference h = |s− t|:

γ(s+ h, s) =E[(xs+h − µx)(xs − µx)]

=E[(xh − µx)(x0 − µx)]

=γ(h, 0).

• Weakly Stationary: The second moments of xt are finite, i.e. E [x2t ] < ∞ for

all t, the mean function is constant and does not depend on time, µx,t = µx, and

the autocovariance function γx(s, t) depends on s and t only through their absolute

difference h = |s− t|.

Note that although strong stationarity implies weak stationarity, the reverse does not hold.

Strong stationarity is usually too strict to be a reasonable assumption, so from here on out

we will call a time series stationary if it is weakly stationary.

When a time series is stationary, its autocovariance and autocorrelation functions can be

written as functions of a single variable h. For this reason, we will drop the second arguments

of the autocovariance and autocorrelation functions when a time series is stationary, writing

γx (h) = γx (h, 0) and ρx (h) = ρx (h, 0).

When we observe a time series x, we do not know the mean, autocovariance, or auto-

correlation functions a priori - we need to estimate them. When x is stationary we can

compute:
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• The sample mean function:

µ̂x = x̄ =
n∑

t=1

xt/n. (1)

• The sample autocovariance function:

γ̂x (h) =
1

n

n−h∑
t=1

(xt+h − µ̂x) (xt − µ̂x) , (2)

with γ̂x (−h) = γ̂x (h) for h = 0, 1, . . . , n− 1.

– We divide by n and not n − h to ensure that the sample variance of a sum of

elements of x computed from the n×n sample autocovariance matrix with entries

γ̂ (i− j) will always be nonnegative.

– This is a biased estimate of γx (h).

• The sample autocorrelation function:

ρ̂x (h) =
γ̂x (h)

γ̂x (0)
. (3)

When we examine a sample autocorrelation function, it is natural to ask how different

our estimates of the sample autocorrelation are from what we would might expect if x were

a white noise time series with no autocorrelation at all, i.e. if ρx (h) = 0 for all h 6= 0. We

can get a handle on this using the following result:

If x = µx +w where µx = 0 and wi
i.i.d.∼ N (0, σ2

w) for i = 1, . . . n, then ρ̂x (h) ≈ v/
√
n,

for h = 1, . . . H, where v ∼ N (0, 1) and H is fixed but arbitrary.

This result allows us to perform an approximate test of the null hypothesis that ρx (h) = 0

for any h > 1.
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