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The material in this set of notes is based on S&S Chapter 3, specifically 3.1-3.2. We’re

finally going to define our first time series model! , The first time series model we will

define is the autoregressive (AR) model. We will then consider a different simple time

series model, the moving average (MA) model. Putting both models together to create

one more general model will give us the autoregressive moving average (ARMA) model.

The AR Model

The first kind of time series model we’ll consider is an autoregressive (AR) model. This

is one of the most intuitive models we’ll consider. The basic idea is that we will model the

response at time t xt as a linear function of its p previous values and some independent

random noise, e.g.

xt = 0.5xt−1 + wt, (1)

where xt is stationary and wt
i.i.d.∼ N (0, σ2

w). This kind of model is especially well suited to

forecasting, as

E [xt+1|xt] = 0.5xt−1. (2)
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We explicitly define an autoregressive model of order p, abbreviated as AR (p) as:

(xt − µx) = φ1 (xt−1 − µx) + φ2 (xt−2 − µx) + · · ·+ φp (xt−p − µx) + wt, (3)

where φp 6= 0, xt is stationary with mean E [xt] = µx, and wt
i.i.d.∼ N (0, σ2

w). For convenience:

• We’ll often assume µx = 0, so

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt. (4)

• We’ll introduce the autoregressive operator notation:

φ (B) = 1− φ1B − φ2B
2 − · · · − φpBp, (5)

where Bpxt = xt−p is the backshift operator. This allows us to rewrite (3) and (4)

more concisely as φ (B) (xt − µx) = wt and

φ (B) (xt) = wt, (6)

respectively.

An AR (p) model looks like a linear regression model, but the covariates are also random

variables. We’ll start building an understanding of the AR (p) model by starting with the

simpler special case where p = 1.

The AR (1) model with µx = 0 is a special case of (3)

xt = φ1xt−1 + wt. (7)

A natural thing to do is to try to rewrite xt as a function of φ1 and the previous values

of the random errors. Then (7) will look more like a classical regression problem, as it will

no longer have random variables as as covariates. Furthermore, if we could rewrite xt as a

function of φ1 and the random errors w, then xt would be a linear process.

A linear process xt is defined to be a linear combination of white noise wt and is given
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by

xt = µx +
∞∑

j=−∞

ψjwt−j,

where the coefficients satisfy
∑∞

j=−∞ |ψj| < ∞, wt are independent and identically dis-

tributed with mean 0 and variance σ2
w, and µx = E [xt] < ∞. The condition

∑∞
j=−∞ |ψj|

ensures that xt = µx +
∑∞

j=−∞ ψjwt−j <∞. Importantly, it can be shown that the autoco-

variance function of a linear process is

γx (h) = σ2
w

∞∑
j=−∞

ψj+hψj, (8)

for h ≥ 0, recalling that γx (h) = γx (−h). This means that once we know the linear

process representation of any time series process, we can easily compute its autocovariance

(and autocorrelation) functions. We will often use the infinite moving average operator

shorthand 1 + ψ1B + ψ2B
2 + . . . ψjB

j + · · · = ψ (B).

We can start rewriting xt as follows:

xt = φ2
1xt−1 + φ1wt−1 + wt

= φ3
1xt−2 + φ2

1wt−2 + φ1wt−1 + wt

= φk1xt−k︸ ︷︷ ︸
(∗)

+
k−1∑
j=0

φj1wt−j.

We can see that we can almost lagged values of x out of the right hand side. Fortunately,

when |φ1| < 1, then

limk→∞E

(xt − k−1∑
j=0

φj1wt−j

)2
 = limk→∞φ

2kE
[
x2t−k

]
= 0,

because E
[
x2t−k

]
is constant as long as xt is stationary is assumed. This means that when

|φ1| < 1, then we can write elements of the response xt as a linear function the previous
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values of the random errors:

xt =
∞∑
j=0

φjwt−j. (9)

(9) is the linear process representation of an AR (1) model. It follows that the autoco-

variance function

γx (h) = σ2
w

∞∑
j=0

φj+h1 φj1

= σ2
wφ

h
1

∞∑
j=0

φ2j
1

= σ2
wφ

h
1

(
1

1− φ2
1

)
. (10)

and the autocorrelation function is

ρx (h) = φh. (11)

Note that this is not the only way to compute the values of autocovariance function. We

could compute them directly from (4),

γx (h) =E [xt−hxt] (12)

=E [xt−h (φ1xt−1 + wt)]

=φ1E
[
xt−1−(h−1)xt−1

]
+ E [xt−hwt]

=φ1γx (h− 1) .

This gives us a recursive relation that we can use to compute the autocovariance function
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γx (h), starting from γx (0). We can compute γx (0) using substitution:

γx (0) =E
[
x2t
]

(13)

=E
[
x2t
]

=E
[
(φ1xt−1 + wt)

2]
=E

[
φ2
1x

2
t−1 + 2φ1wtxt−1 + w2

t

]
=φ2

1E
[
x2t−1

]
+ σ2

w

=σ2
w

∞∑
j=0

φ2j
1 (follows from continued substitution)

=
σ2
w

1− φ2
1

, if |φ1| < 1, γx (0) =∞ otherwise!

If |φ1| < 1, then it is easy to see that the AR (1) model x is stationary because the mean

of each xt is zero and the autocovariance function γx (h) = σ2
wφh

(
1

1−φ2

)
depends only on

the lag, h. What happens when |φ1| > 1? (9) does not give a linear process representation

if |φ1| > 1, because
∑∞

j=0 |φ1|j = +∞.

However when |φ1| > 1, we can revisit (7) and note that xt+1 = φ1xt+wt+1. Rearranging

gives

xt =

(
1

φ1

)
xt+1 −

(
1

φ1

)
wt+1.

If φ > 1, then
(

1
φ1

)
< 1 and we can use the same approach we used previously to write

xt = −
∞∑
j=1

(
1

φ1

)j
wt+j.

The problem, however, is that this requires that xt is a function of future values, which may

not be known at time t. We call such a time series non-causal. Using a non-causal model

will rarely make sense in practice, and furthermore makes forecasting impossible - in the

future, whenever we talk about AR (p) models we restrict our attention to causal models.

Understanding when a AR (p) model is causal is more difficult than understanding when
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an AR (1) model is causal. We figured out when an AR (1) model is causal by finding

the coefficients . . . , ψ−j, . . . , ψj, . . . of its linear process representation as a function of the

AR coefficient φ1, and showing that all of the coefficients ψ−∞, . . . , ψ−1 for future errors are

exactly equal to zero.

The linear process representation is especially useful for an AR (p) model when p > 1,

because computing the autocovariance function γx (h) directly as we did in (12) and (13)

gets much more cumbersome when p > 1. We can see this in the AR (2) case, where we

have

xt = φ2xt−2 + φ1xt−1 + wt. (14)

We can get a recursive relation for the autocovariance function γx (h) starting from γx (0)

and γx (1) as follows:

γx (h) =E [xt−hxt]

=E [xt−h (φ1xt−1 + φ2xt−2 + wt)]

=φ1E
[
xt−1−(h−1)xt−1

]
+ φ2E

[
xt−2−(h−2)xt−2

]
+ E [xt−hwt]

=φ1γx (h− 1) + φ2γx (h− 2) .

We can try to compute γx (0) and γx (1) using substitution:

γx (0) =E
[
x2t
]

=E
[
(φ1xt−1 + φ2xt−2 + wt)

2]
=E

[
φ2
1x

2
t−1 + φ2

2x
2
t−2 + 2φ1φ2xt−1xt−2 + 2φ1xt−1wt + 2φ2xt−2wt + w2

t

]
=E

[
φ2
1x

2
t−1 + φ2

2x
2
t−2 + 2φ1φ2xt−1xt−2

]
+ σ2

w.

However, this gets very complicated, even though we only have two lags!

Unfortunately, it’s much harder to find the linear process representation of an AR (p)

model by simple substitution as we did with an AR (1) model. Substituting according to
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(14)

xt =φ1φ2xt−3 +
(
φ2 + φ2

1

)
xt−2 + φ1wt−1 + wt

=
(
φ2 + φ2

1

)
φ2xt−4 + φ1

(
2φ2 + φ2

1

)
xt−3 +

(
φ2 + φ2

1

)
wt−2 + φ1wt−1 + wt

=
(
φ2 + φ2

1

)
φ2xt−4 + φ1

(
2φ2 + φ2

1

)
(φ2xt−5 + φ1xt−4 + wt−3) +

(
φ2 + φ2

1

)
wt−2 + φ1wt−1 + wt

=φ1φ2

(
2φ2 + φ2

1

)
xt−5 +

(
φ2
2 + φ2

1φ2 + 2φ1φ
2
2 + φ3

1φ2

)
xt−4+

φ1

(
2φ2 + φ2

1

)
wt−3 +

(
φ2 + φ2

1

)
wt−2 + φ1wt−1 + wt . . .

Again, this is not working out nicely!

Instead, we can find the values of ψ1, . . . , ψj, . . . that satisfy φ (B)ψ (B)wt = wt, which

follows from substituting xt =
∑∞

j=−∞ ψjwt−j into (20). This is equivalent to finding the

inverse function φ−1 (B) that satisfies φ (B)φ−1 (B)wt = wt.

We can see how this method for finding the values of ψ1, . . . , ψj, . . . works by returning

to the AR (1) case. The values ψ1, . . . , ψj, . . . that satisfy φ (B)ψ (B)wt = wt solve:

1 + (ψ1 − φ1)B + (ψ2 − ψ1φ1)B
2 + · · ·+ ψjB

j + . . . = 1, (15)

where (15) follows from expanding φ (B) and ψ (B). This allows us to recover the linear

process representation of the AR (1) process in a different way, as (15) holds if all of the

coefficients for Bj with j > 0 are equal to zero, i.e. ψk − ψk−1φ1 = 0 for k > 1.

Now let’s try this approach for the AR (2) case. We have

1 =
(
1− φ1B − φ2B

2
) (

1 + ψ1B + ψ2B
2 + · · ·+ ψjB

j + . . .
)

=1 + (ψ1 − φ1)B + (ψ2 − φ2 − φ1ψ1)B
2 + (ψ3 − φ1ψ2 − φ2ψ1)B

3 + · · ·+

(ψj − φ1ψj−1 − φ2ψj−2)B
j + . . .
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We see that we can compute the values of ψ1, . . . , ψj, . . . recursively,

ψ1 = φ1

ψ2 = φ2 + φ2
1

ψ3 = 2φ1

(
φ2 + φ2

1

)
,

and so on.

It’s also very tricky to figure out when AR (p) model is causal for p > 1. An AR (p)

model is causal for p > 1 model is causal when all of the roots of the AR polynomial

φ (z) = 1− φ1z − · · · − φpzp,

lie outside the unit circle, i.e. φ (z) 6= 0 for |z| ≤ 1. This condition ensures that the∑∞
j=1 |ψj| < ∞. This is not very intuitive. If we want to try to get a handle on why the

roots of the AR polynomial need to lie outside the unit circle for a AR(p) model to be

causal, we need to take a look at the proof. You won’t be tested on your understanding

of this - we’ll just go through it here in case you are curious following along the proof of

Theorem 3.2 in Chan (2010).

Let’s suppose that φ (z) has roots r1, . . . , rp that satisfy 1 < |r1| ≤ · · · ≤ |rp|, i.e.

φ (rj) = 0 for j = 1, . . . , p. Then this ensures that we can invert φ (z) when z ≤ |r1|.

Recalling that ψ (B) can be thought of as the inverse of φ (B), this means that

1

φ (z)
=
∞∑
j=0

ψjz
j <∞ if |z| ≤ |r1| ,

where ψ0 = 1. Then we can invert φ (z) at any value of z < |r1|, e.g. at z = 1 + δ < |r1|,

where δ > 0. Writing this out, we have

1

φ (1 + δ)
=
∞∑
j=0

ψj (1 + δ)j <∞. (16)

If (16), then there must be some constant M > 0 that gives an upper bound for all∣∣∣ψj (1 + δ)j
∣∣∣, i.e.

∣∣∣ψj (1 + δ)j
∣∣∣ ≤ M for all j = 0, 1, 2, . . . . Shifting things around, this is
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equivalent to |ψj| ≤M (1 + δ)−j. Then

∞∑
j=1

|ψj| ≤M
∞∑
j=1

(
1

1 + δ

)j
=M

(
∞∑
j=0

(
1

1 + δ

)j
− 1

)

=M

(
1

1− 1
1+δ

− 1

)
(follows from

1

1 + δ
< 1 if δ > 0)

=M

(
1 + δ

1 + δ − 1
− 1

)
= M

(
1

δ

)
<∞.

The MA Model

Instead of assuming that elements of a time series xt are linear function of previous elements

of the time series x1, . . . , xt−1 and independent, identically distributed noise wt, we might

assume that elements of a time series xt are a linear function of all of the current and previous

noise variates, w1, . . . , wt−1. The latter gives us the moving average model of order q,

abbreviated as MA (q). The MA (q) model is explicitly defined as

xt − µx = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q, (17)

where θq 6= 0, E [xt] = µx, and wt
i.i.d.∼ N (0, σ2

w). For convenience:

• We’ll often assume µx = 0, so

xt = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q. (18)

• We’ll introduce the moving average operator notation:

θ (B) = 1 + θ1B + θ2B
2 + · · ·+ θpB

p, (19)

which allows us to rewrite (17) and (18) more concisely as xt − µx = θ (B)wt and

xt = θ (B)wt, (20)
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respectively.

Again, the MA (q) model looks like a linear regression model. Importantly, the MA (q)

model is stationary for any values of the parameters θ1, . . . , θq.

Like we did with the AR (p) model, we’ll start building an understanding of the MA (q)

by starting with the simpler special case where q = 1,

xt = θ1wt−1 + wt. (21)

It is easy to see that this MA (q) model is mean zero. We can compute the autocovariance

function as follows:

γx (h) = E [xtxt−h]

= E [(θ1wt−1 + wt) (θ1wt−h−1 + wt−h)]

= E
[
θ21wt−1wt−h−1 + θ1wtwt−h−1 + θ1wt−1wt−h + wtwt−h

]
= E

[
θ21wt−1wt−h−1 + θ1wt−1wt−h + wtwt−h

]

=


σ2
w (θ21 + 1) h = 0

θ1 h = 1

0 h > 1

. (22)

The corresponding autocorrelation function is

ρx (h) =


θ1
θ21+1

h = 1

0 h > 1
. (23)

The autocovariance and autocorrelation functions of the MA (q) model are noteworthy in

two ways:

(•) The autocorrelation function ρx (h) is bounded, ρx (h) ≤ 1/2 for h = 1.

(∗) The parameters of the MA (q) model do not uniquely determine the autocovariance

and autocorrelation function values. θ1 and σ2
w do not uniquely determine the value
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of the autocovariance function γx (h), and θ1 does not determine the value of the

autocorrelation function.

It is easiest to understand (∗) via some examples. First, we compute γx (h) and ρx (h) for a

MA (1) process with θ1 = 5 and σ2
w = 1,

γx (h) =


52 + 1 = 26 h = 0

5 h = 1

0 h > 1

and ρx (h) =


5

52+1
= 5

26
h = 1

0 h > 1
.

Compare this to γx (h) and ρx (h) for a MA (1) process with θ1 = 1/5 and σ2
w = 25,

γx (h) =


25
(

1
52

+ 1
)

= 25
(
1+25
25

)
= 26 h = 0

25
(
1
5

)
= 5 h = 1

0 h > 1

and ρx (h) =


1
5

1
52

+1
= 5

26
h = 1

0 h > 1
.

Both sets of MA (1) parameters give the values of the autocovariance and autocorrelation

functions! This is undesirable - it means that even if we know that our time series is mean

zero with a specific autocovariance function γx (h) autocorrelation function ρx (h), we can’t

find a unique pair of corresponding MA (1) parameter values (θ1, σ
2
w). /

We solve this problem by requiring that our MA(1) model be invertible, which means

that it has an infinite autoregressive representation (1 + π1B + π2B
2 + · · ·+ πjB

j + . . . )xt =

wt with
∑∞

j=1 |πj| < ∞. We can find a unique pair of corresponding MA (1) parameter

values (θ1, σ
2
w) if we restrict our attention to the parameter values that give an invertible

MA (1) model. What we mean by this is that we can rearrange (21) to resemble a AR(1)
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model for wt,

wt =− θ1wt−1 + xt

=θ21wt−2 − θ1xt−1 + xt

=− θ31wt−3 + θ21xt−2 − θ1xt−1 + xt

= (−θ1)k wt−k +
k∑
j=0

(−θ1)j xt−j,

where limk→∞ (−θ1)k wt−k +
∑k

j=0 (−θ1)j xt−j =
∑∞

j=0 (−θ1)j xt−j. Recalling the AR(1)

model, this will be the case when |θ1| < 1. Going back to our example where we considered

the MA (1) parameters (θ1, σ
2
w) = (5, 1) and (θ1, σ

2
w) =

(
1
5
, 25
)
, this means that only the

latter pair (θ1, σ
2
w) =

(
1
5
, 25
)

satisfy our definition of a MA (1) model.

More generally, requiring that an MA(q) model be invertible ensures that we can find

a unique set of corresponding MA (q) parameter values (θ1, . . . , θq, σ
2
w) if we know that

our time series is MA(q) with mean zero, a specific autocovariance function γx (h), and

autocorrelation function ρx (h). We introduce some additional notation for this; an MA(q)

model is invertible if we can write wt = π (B)xt, where π (B) = 1 +π1B+ · · ·+πjB
j + . . .

and
∑∞

j=0 |πj| < ∞. This looks a lot like the problem of ensuring that a AR (p) model is

causal, and it turns out that an MA (q) model is invertible if when all of the roots of the

MA polynomial

θ (z) = 1 + θ1z + · · ·+ θqz
q,

lie outside the unit circle, i.e. θ (z) 6= 0 for |z| ≤ 1.
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The ARMA Model

The autoregressive moving average (ARMA) model combines the AR and MA models.

We define an ARMA(p, q) model as:

(xt − µx) = φ1 (xt−1 − µx) + · · ·+ φp (xt−p − µx) + θ1wt−1 + · · ·+ θqwt−q + wt, (24)

where wt
i.i.d.∼ N (0, σ2

w), xt is stationary, φp 6= 0, θq 6= 0, σ2
w > 0, and the MA and AR

polynomials θ (B) and φ (B) have no common roots. We refer to p as the autoregressive

order and q as the moving average order. Again, for convenience we will usually assume

µx = 0, so

xt = φ1xt−1 + · · ·+ φpxt−p + θ1wt−1 + · · ·+ θqwt−q. (25)

Using operator notation becomes especially beneficial for ARMA(p, q) models; we can just

write φ (B)xt = θ (B)wt instead of (25). Note that:

• Setting p = 0 gives a MA (q) model;

• Setting q = 0 gives an AR (p).

As with AR (p) and MA (q) models, we will need to figure out when an ARMA(p, q) is

causal and invertible. Fortunately, this is simple given the work we’ve already done for

MA (q) and AR (p) models. An ARMA(p, q) is:

• Causal, i.e. we can find ψ1, . . . , ψj, . . . such that ψ (z) =
∑∞

j=0 ψjz
j = θ(z)

φ(z)
that satisfy∑∞

j=0 |ψj| <∞ for |z| < 1, if φ (z) 6= 0 for |z| ≤ 1;

• Invertible, i.e. we can find π1, . . . , πj, . . . such that π (z) =
∑∞

j=0 πjz
j = φ(z)

θ(z)
that

satisfy
∑∞

j=0 |πj| <∞ for |z| < 1, if θ (z) 6= 0 for |z| ≤ 1.

Returning to the definition of an ARMA(p, q) model, it is not immediately obvious why

we require that the moving average and autoregressive polynomials θ (B) and φ (B) have no
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common roots. Consider the following model, which resembles an ARMA (p, q) model:

xt = 0.5xt−1 − 0.5wt−1 + wt, (26)

where xt is stationary and wt
i.i.d.∼ N (0, σ2

w). It’s easy to see that the mean function µx = 0.

The autocovariance function γx (h) satisfies:

γx (h) = E [xtxt−h]

= E [(0.5xt−1 − 0.5wt−1 + wt)xt−h]

= 0.5E [xt−1xt−h]− 0.5E [wt−1xt−h] + E [wtxt−h]

=

 0.5γx (0)− 0.5σ2
w h = 1

0.5γx (h− 1) h > 1
(27)

We just need to combine this with a starting value, γx (0):

γx (0) = E
[
x2t
]

= E
[
0.52x2t−1 + 0.52w2

t−1 + w2
t − (2) (0.5)2w2

t−1
]

= 0.52γx (0) +
(
1− 0.52

)
σ2
w =⇒ γx (0) = σ2

w

Plugging this in to (27), for h > 0 we get

γx (h) = 0!

This means that (26) is equivalent to the white noise model, xt = wt!

If we examine the corresponding AR and MA polynomials, we see that they share the

common factor 1 − 0.5B, θ (B) = 1 − 0.5B and φ (B) = 1 − 0.5B. Dividing each by

the common factor yields θ (B) = 1 and φ (B) = 1, which gives us the familiar definition

of the white noise model, xt = wt. This is why we require that the the moving average

and autoregressive polynomials θ (B) and φ (B) have no common roots, otherwise we could

mistake a white noise process for an ARMA(p, q) process with p, q > 0.

As with the AR (p) model, the linear process representation of an ARMA (p, q) model
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is especially useful for computing the autocovariance function of an ARMA (p, q) model.

Using the same approach we used for the AR (p) model, the values of ψ1, . . . , ψj, . . . that

satisfy xt = ψ (B)wt with
∑∞

j=0 |ψj| <∞ can be computed by substituting ψ (B)wt into

the equation that defines the ARMA (p, q) model, φ (B)xt, and matching the coefficients

for each power of B on each side, i.e.

φ (B)ψ (B)wt = θzwt

=⇒ (1− φ1B − . . . φpBp)
(
1 + ψ1B + . . . ψjB

j
)
wt = (1 + θ1B + · · ·+ θqB

q)wt.

This yields a sequence of equations that would start with

ψ1 − φ1 = θ1

ψ2 − φ2 − φ1ψ1 = θ2,

and continue on for ψ3, . . . , ψj, . . . . We will not be computing ψ1, . . . , ψj, . . . by hand in

class - this requires a knowledge of differential equations that goes above and beyond the

prerequisites for this course. However, statistical software like R will often include functions

that can be used to compute the φ1, . . . , φK for some user specified value K > 1 given values

for φ1, . . . , φp and θ1, . . . , θp.
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