
Forecasting

February 21, 2019

The material in this set of notes is based on S&S Chapter 3, specifically 3.5. We’re going

to start by learning how to forecast future values of our time series, as if we knew the true

autocorrelation functions and/or ARMA(p, q) parameters.

General Time Series Forecasting

First, we going to talk about how we might forecast future values of a time series in general

using just knowledge of the autocovariance function. Without loss of generality, we’re always

going to assume a mean zero time series xt. Any stationary time series zt with nonzero

mean µz can be transformed to a mean zero time series by just subtracting off the mean,

xt = zt − µz.

To define a “good” forecast, we need to define (a) what “good” means and (b) what

kind of forecasts we’re interested in considering. Supposing that we observed a length-n

time series x, we define a “good” a forecast x̂n+1 as one that minimizes the expected mean

squared error,

vn = E
[
(xn+1 − x̂n+1)

2] , (1)

1



and we consider forecasts that are linear functions of the observed values x1, . . . xn,

x̂n+1 =
n∑

j=1

cnjxn+1−j, (2)

for some cn. The values depend on the length of the time series used to construct the

forecast.

Plugging (2) into (1), we get

E

(xn+1 −

(
n∑

j=1

cnjxn+1−j

))2
 = E

[
x2n+1

]
+ c′nAncn − 2c′nbn, (3)

where an,ij = γx (i− j) and bn,j = γx (j).

The optimal cn satisfy:

Ancn = bn, (4)

so we can obtain cn by inverting An, i.e. cn = A−1n bn.

When n is large, An is going to be very computationally burdensome to invert, making

it computationally prohibitive to solve (4) for cn. Fortunately, there are two recursive

algorithms that allow us to compute x̂n+1 without inverting An.

• Durbin-Levinson: If xt is mean-zero and stationary and the autocovariance function

γx (h) satisfies γx (0) > 0 and γx (h) → 0 as h → ∞, then the coefficients cnj of (2)

satisfy:

– c11 = ρx (1);

– v0 = γx (0);

– cnn =
(
γx (n)−

∑n−1
j=1 c(n−1)jγx (n− j)

)
v−1n−1;

– cnj = c(n−1)j − cnnc(n−1)(n−j);

– vn = vn−1 (1− c2nn).

We’re not going to prove why the Durbin-Levinson algorithm works in this class, it’s a

2



bit of a headache. The general idea is that assuming stationarity allows us to rewrite

the prediction x̂n+1 in a convenient way. If you are interested in understanding this

better, see Brockwell and Davis (1991) Section 5.2.

• Innovations: The innovations algorithm takes advantage of the fact that we are

really only interested in computing the predictions x̂n+1, not the values of cn. Instead

of finding cn, the innovations algorithm produces predictions x̂n+1 that are a linear

function of prediction errors, xj − x̂j for j = 1, . . . n:

x̂n+1 =
n∑

j=1

dnj (xj − x̂j) . (5)

So, instead of computing cn we need to compute dn.

We note that, unlike the Durbin-Levinson algorithm, the innovations algorithm can

be used even if xt is not stationary. However, since we will just be dealing with

stationary time series, we’ll describe how the innovations algorithm works in the sta-

tionary case. The innovations algorithm works as long as the covariance matrix An with

an,ij = γx (i− j) is invertible. We define x̂1 = 0 and x̂k+1 =
∑k

j=1 dkj (xk+1−j − x̂k+1−j)

if k ≥ 1. The innovation algorithm sets:

– v0 = γx (0);

– dn(n−k) = v−1k

(
γx (n− k)−

∑k−1
j=0 dk(k−j)dn(n−j)vj

)
for k = 0, 1, . . . , n− 1;

– vn = γx (0)−
∑n−1

j=0 d
2
n(n−j)vj.

This lets us compute v0, then d11, then v1, then d22 and d21, and so on. Again,

remember that the innovation algorithm does not give the coefficients of the lagged

values x1, . . . , xn in (2), but rather the coefficients of the lagged prediction errors xj−x̂j

for j = 1, . . . , n. Again, we’re not going to prove why the innovations algorithm works

in this class. The general idea is that xj−x̂j is orthogonal to xk−x̂k for k 6= j, and that

that allows us to simplify computations. If you are interested in understanding this

3



better, this (like the Durbin-Levinson algorithm) is also covered in detail in Brockwell

and Davis (1991) Section 5.2.

ARMA (p, q) Time Series Forecasting

Now that we have some methods for forecasting time series in general using the autocovari-

ance function γx (h), we can talk about how to forecast future values of ARMA (p, q) time

series. This is easiest to understand in the context of the simplest possible ARMA (p, q)

models, the ARMA (1, 0) or AR (1) model and the ARMA (0, 1) or MA (1) model. To

make things even simpler, we’ll focus on forecasting x3.

First, let’s just compute the autocovariance function for the general ARMA (1, 1) model

given by:

xt = φ1xt−1 + θ1wt−1 + wt. (6)

Remeber - this ARMA (1, 1) model is mean-zero. It has variance,

γx (0) = E
[
x2t
]

= φ2
1E
[
x2t−1

]
+ θ21E

[
w2

t−1
]

+ E
[
w2

t

]
+ 2φ1θ1E [xt−1wt−1]

= φ2
1γx (0) +

(
θ21 + 2φ1θ1 + 1

)
σ2
w

γx (0) =
(θ21 + 2φ1θ1 + 1)σ2

w

1− φ2
1

, (7)

and autocovariance function

γx (h) = E [xtxt−h]

= φ1E [xt−1xt−h] + θ1E [wt−1xt−h]

=

 φ1γx (0) + θ1σ
2
w h = 1

φ1γx (h− 1) h > 1

4



We can simplify this further to

γx (h) = σ2
wφ

h−1
1

(
(1 + θ1φ1) (φ1 + θ1)

1− φ2
1

)
(8)

ρx (h) =
(1 + θ1φ1) (φ1 + θ1)φ

h−1

1 + 2θ1φ1 + θ21
,

both for for h ≥ 1.

It’s a bit of a pain to use (4) to predict x̂3, because we need to do some matrix compu-

tations. Instead, let’s see what the Durbin-Levinson and innovation algorithms give us. For

x̂3, we need to compute:

Durbin-Levinson:

1. c11 = ρx (1);

2. v0 = γx (0);

3. v1 = γx (0)
(
1− ρx (1)2

)
;

4. c22 =
(
ρx (2)− ρx (1)2

)
/
(
1− ρx (1)2

)
;

5. c21 = ρx (1) (1− ρx (2)) /
(
1− ρx (1)2

)
;

6. x̂3 = c21x2 + c22x1.

Note that I’ve simplified things quite a bit to make things easier.

For an AR (1) model where γx (0) = σ2
w/ (1− φ2

1) and ρx (h) = φh
1 , this simplifies to:

1. c11 = φ1;

2. v0 = σ2
w/ (1− φ2

1);

3. v1 = σ2
w;

4. c22 = 0;

5. c21 = φ1;

5



6. x̂3 = φ1x2.

For an MA (1) model where γx (0) = σ2
w (θ21 + 1) and ρx (h) = θ1/ (θ21 + 1) if h = 1 and

ρx (h) = 0 if h > 1, this simplifies to:

1. c11 = θ1/ (1 + θ21);

2. v0 = σ2
w (1 + θ21);

3. v1 = σ2
w (1 + θ41 + θ21) / (1 + θ21);

4. c22 = −ρx (1)2 /
(
1− ρx (1)2

)
;

5. c21 = ρx (1) /
(
1− ρx (1)2

)
;

6. x̂3 =
(
ρx (1) /

(
1− ρx (1)2

))
x2 +

(
−ρx (1)2 /

(
1− ρx (1)2

))
x1.

We can see that although things simplify nicely for the AR (1) model, i.e. we end up

expressing x̂3 as just a function of the most immediate previous value x2. Unfortunately

things do not simplify as nicely for the MA (1) model - we have to hold onto x2 − x̂2 and

x1 − x̂1, even though our MA (1) model lets us write x3 just as a function of the previous

noise w2 and some additional independent noise.

We might ask if things work out better if we compute d3 under the innovation algorithm.

Innovation:

• v0 = γx (0);

• d11 = ρx (1);

• v1 = γx (0)
(
1− ρx (1)2

)
.

• d22 = ρx (2);

• d21 = ρx (1) (1− ρx (2)) /
(
1− ρx (1)2

)
;

6



• x̂3 = d21 (x2 − x̂2) + d22 (x1 − x̂1).

For the AR (1) model,

• v0 = σ2
w/ (1− φ2

1);

• d11 = φ1;

• v1 = σ2
w.

• d22 = φ2
1;

• d21 = φ1;

• x̂3 = φ1 (x2 − x̂2) + φ2
1 (x1 − x̂1).

For the MA (1) model,

• v0 = σ2
w (1 + θ2w);

• d11 = θ1/ (1 + θ21);

• v1 = σ2
w (1 + θ2w);

• d22 = 0;

• d21 = ρx (1) /
(
1− ρx (1)2

)
;

• x̂3 =
(
ρx (1) /

(
1− ρx (1)2

))
(x2 − x̂2)

This fixes our problem for the MA (1) model - we only need to hold onto the most recent lag

x2 and it’s prediction x̂2. Unfortunately, the innovations algorithm doesn’t simplify nicely

for the AR (1) model - we have to hold onto x2 and x1, even though our AR (1) model lets

us write x3 just as a function of x2 and independent noise.

This leaves us a bit stuck. For general ARMA (p, q) processes, applying the Durbin-

Levinson or innovation algorithms to xt directly won’t give us our prediction for xn+1 as

7



a function of only the max {p, q} most recent lagged values xn+1−1, . . . , xn+1−p and the

max {p, q} most recent forecast errors xn+1−1 − x̂n+1−1, . . . , xn+1−p − x̂n+1−p.

I’m not going to go into this in detail, but it turns out that if we apply the innovations

algorithm to a specific transformation of xt denoted by f (xt) (I won’t give the specific trans-

formation here for the sake of our sanity!) and then transform back to get our predictions

x̂n+1, we’re able to get a recursive algorithm for predicting x̂n+1 under a ARMA (p, q) model

that only requires us to hold on to:

• The p previous values of the time series xn, . . . , xn+1−p;

• The q previous values of the forecast errors xn − x̂n, . . . , xn+1−q − x̂n+1−q.

I don’t expect you to know what the transformation or algorithm is. Rather I just hope we

can all appreciate that forecasting a future value without having to hold onto the entire past

is tricky, even if we assume a model like an ARMA (p, q) model that gives us a convenient

way of expressing an observation at any given time as a function of only the max {p, q}

most recent values. That said, if you really want to know how this works see Section 5.3 of

Brockwell and Davis (1991).

8


