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The material in this set of notes is based on S&S Chapter 3, specifically 3.6. We’re going

to start by learning how to estimate the ARMA(p, q) parameters, first as if we know p

and q and then as if we do not.

Estimation

Method of Moments

These methods are based on our ability to relate the autocovariance function to the ARMA(p, q)

parameters. Using whatever methods we have for recovering the unknown ARMA(p, q) pa-

rameters from the autocovariance function, we can obtain estimates of the ARMA(p, q)

parameters by substituting the sample autocovariance function in for the true autocovari-

ance function.

Yule-Walker Estimation of AR(p) Coefficients: The method of moments works best

for the AR(p) model, in which case it is called Yule-Walker estimation of the AR(p)

parameters coefficients. Remember, the AR(p) model is given by

xt = φ1xt−1 + · · ·+ φpxt−p + wt.
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We know that the autocovariance function satisfies:

γx (0) = φ1γx (1) + · · ·+ φpγx (p) + σ2
w (1)

γx (h) = φ1γx (h− 1) + · · ·+ φpγx (h− p) . (2)

As long as we have n ≥ p, we can plug in estimates of all of the autocovariance functions

that appear in (1) to estimate σ2
w. To estimate the remaining p coefficients φ1, . . . , φp, we

need p equations. We can restrict our attention to (1) and (2):

γx (1) = φ1γx (0) + · · ·+ φpγx (1− p)
...

γx (p) = φ1γx (p− 1) + · · ·+ φpγx (0) .

This may look familiar - it’s actually our forecasting equation for forecasting xp+1! Re-

arranging gives:

Apφ = bp.

Replacing the true autocovariance functions with the sample autocovariance functions yields

Âpφ̂YW = b̂p, (3)

where Âp has elements âp,ij = γ̂x (i− j), b̂p,i = γ̂x (i), and φ̂YW are the Yule-Walker estima-

tors. Note that because computing φ̂YW is the same as solving a forecasting equation, we

can either solve (3) directly by inverting An or use the Durbin-Levinson algorithm.

If φ̂YW and σ̂2
w,YW are estimated from a time series x that is distributed according to a

causal AR(p) model, then as n→∞ (equivalently, as the time series gets longer):

•
√
n
(
φ̂YW − φ

)
d→ N

(
0, σ2

wA
−1
p

)
;

• σ̂2
w,YW

p→ σ2
w.

Furthermore, φ̂YW will always be causal.
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Yule-Walker Estimation of MA(q) Coefficients: Yule-Walker estimation of the

MA(q) parameter coefficients is much more challenging. Consider the MA(1) case:

xt = θ1wt−1 + wt.

We know that the autocovariance function satisfies:

γx (0) =
(
1 + θ21

)
σ2
w (4)

γx (h) =

 θ1σ
2
w h = 1

0 h > 1
(5)

Only γx (0) and γx (1) depend on the unknown MA(1) parameters. Plugging in the sam-

ple autocovariance values γ̂x (0) and γ̂x (1) yields the Yule-Walker equations for the MA(1)

model. However, these Yule-Walker equations do not depend on the MA(1) parameters

linearly as in the AR (p) case.

We can overcome the nonlinearity in the MA (1) case. We can obtain σ2
w = γ̂x (1) /θ1

from (5) and plug this into (4). Rearranging and dividing by the sample variance γ̂x (0)

yields

0 = ρ̂x (1) θ21 − θ1 + ρ̂x (1) . (6)

Then we can then solve (6) for θ1 using the quadratic formula:

θ1 =
1±

√
1− 4ρ̂x (1)2

2ρ̂x (1)
.

We can see that this will yield two real solutions when |ρ̂x (1)| < 1/2, in which case we choose

the one that corresponds to an invertible MA(1) model.

When |ρ̂x (1)| > 1/2, there are no real solutions. This highlights an issue with method-

of-moments estimation of MA(q) parameters that does not arise in method-of-moments

estimation of AR(p) parameters. Certain autocovariance values may not be achievable

under MA(q) models for any values of θ1, . . . , θq and σ2
w, whereas all autocovariance values
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are achievable under an AR(p) model for some φ1, . . . , φp and σ2
w. This means that that

it can be impossible to estimate MA(q) parameters for certain time series, if their sample

autocovariance functions include values that cannot be achieved by an MA(q) model.

Challenges posed by nonlinearity are more evident if we add another moving average

term and consider an MA (2) model,

xt = θ1wt−1 + θ2wt−2 + wt.

We know that the autocovariance function satisfies:

γx (0) =
(
1 + θ21 + θ22

)
σ2
w (7)

γx (h) =


θ1 (1 + θ2)σ

2
w h = 1

θ2σ
2
w h = 2

0 h > 2

(8)

Again, we can plug in the sample autocovariance values γ̂x (0) and γ̂x (1) to get the Yule-

Walker equations for the MA(2) model:

γ̂x (0) =
(
1 + θ21 + θ22

)
σ2
w

γ̂x (1) = θ1 (1 + θ2)σ
2
w

γ̂x (2) = θ2σ
2
w.

It is easy to see that these are very nonlinear in θ1, θ2, and σ2
w and difficult to solve.

Based on what we’ve seen so far, we can expect that solving the Yule-Walker equations

will get more and more difficult as the order of the MA (q) model q increases. Furthermore,

these problems will persist if we add autoregressive terms and Yule-Walker estimation of

ARMA (p, q) parameters will be similarly intractable. We’re going to need to take a different

approach that does not rely on exact moment-matching instead, if we want to get method-

of-moments estimates of MA (q) and ARMA(p, q) parameters. On top of the numerical

challenges, estimates of MA (q) and ARMA(p, q) parameters obtained by solving the Yule-
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Walker equations will be inefficient relative to the maximum likelihood estimates, i.e. they

will tend to be more variable than the corresponding maximum likelihood estimators of the

same quantities.

Moment-Based Estimation of ARMA(p, q) Coefficients via Innovations: Recall

that another way of obtaining forecasts was via the innovations algorithm, which finds the

coefficients dn that minimize

vn = E

(xn+1 −
n∑
j=1

dnjxn−j

)2
 .

The coefficients dnj → ψj as n → ∞. This is helpful, because we can relate elements of

ψj to φ1, . . . , φp and θ1, . . . , θq. Remember that when our ARMA(p, q) model is causal and

invertible, we can write:

φ (B)ψ (B)wt = θ (B)wt.

Expanding this gives us our equations relating ψ1, . . . , ψn to φ1, . . . , φp and θ1, . . . , θq.

ψj = θj +

min{j,p}∑
i=1

φiψj−i for j = 1, . . . , q (9)

ψj =

min{j,p}∑
i=1

φiψj−i for j = q + 1, . . . , n (10)

Because (10) does not involve θj at all and is linear in φ1, . . . , φp, we can solve for the

innovations estimates φ̂I having plugged in dn1, . . . , dnn for ψ1, . . . , ψn. Then plugging φ̂I

for φ and dn1, . . . , dnn in for ψ1, . . . , ψn, we can obtain θ̂I .

These estimators are not consistent, and inefficient relative to maximum likelihood esti-

mators when estimating the parameters of ARMA(p, q) models with q > 0. Their advantage

is that they are quite easy to compute, and that they can provide good starting values for

more complicated algorithms for estimating ARMA(p, q) parameters, like those used to

compute maximum likelihood estimators.
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Maximum Likelihood Estimation

Maximum likelihood estimation of ARMA(p, q) also incorporates the distributional as-

sumptions we made. Specifically, we assumed that the noise is independent and identically

normally distributed, wj
i.i.d.∼ N (0, σ2

w). Because a vector x distributed according to an

ARMA(p, q) model is linear in the noise, we know that x is normally distributed as well,

with mean E [x] = µx1n and V [x] = An, where an,ij = γx (i− j). Letting φ and θ be p× 1

and q× 1 vectors of the autoregressive and moving average parameters in the ARMA(p, q)

model, then we can write the likelihood of x as

p
(
x|φ,θ, µx, σ2

w

)
=

1√
2π |An|

exp

{
−1

2
(x− µx1n)′A−1n (x− µx1n)

}
. (11)

This is a quick, parsimonious way of writing the likelihood of x, but as we saw with

the forecasting algorithm, it can be computationally challenging to evaluate if n is large

because each time we evaluate (11) for new values of the ARMA(p, q) parameters we need

to invert and compute the determinant An. Instead, we will derive the likelihood of x from

the conditional distributions, making use of the fact that

p
(
x|φ,θ, µx, σ2

w

)
=

p
(
x1|φ,θ, µx, σ2

w

)
p
(
x2|x1,φ,θ, µx, σ2

w

)
. . . p

(
xn|xn−1, . . . , x1,φ,θ, µx, σ2

w

)
.

Again, each conditional distribution p (xj|xj−1, . . . , x1,φ,θ, µx, σ2
w) will be normal, because

each xj is a linear function of normal noise variables. For this to be useful, though, we need

to also know the conditional mean and variance of each xj given xj−1, . . . , x1. This should

remind us of forecasting! We didn’t explicitly show E [xj|xj−1, . . . , x1] = x̂j previously.

Rather, we derived x̂j as the linear function of xj−1, . . . , x1 which minimizes

vj = E
[
(xj − x̂j)2 |xj−1, . . . , x1

]
.
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If we take the derivative with respect to x̂j, we obtain:

E [2 (xj − x̂j) |xj−1, . . . , x1] = 0 =⇒ E [xj|xj−1, . . . , x1] = x̂j.

This confirms that E [xj|xj−1, . . . , x1] = x̂j, so we know the mean of each conditional distri-

bution. Based on our definition of vj this means that we also know that the variance of each

conditional distribution is vj.

Putting it all together, if x is distributed according to an ARMA(p, q) model we have:

• xj|xj−1, . . . , x1 is normal;

• E [xj|xj−1, . . . , x1] = x̂j;

• V [xj|xj−1, . . . , x1] = vj.

Then we can rewrite (11) as

p
(
x|φ,θ, µx, σ2

w

)
=

n∏
j=1

1√
2πvj

exp

{
−1

2
(xj − x̂j)2 /vj

}
. (12)

This is much nicer than (11) to work with - we saw when we discussed forecasting that

there are multiple ways to quickly compute x̂1, . . . , x̂n and v1, . . . , vn.

The next step is to take the log of (12), for computational stability, and maximize it over

φ, θ, µx, and σ2
w. However, before we continue we are going to reparametrize (11) slightly

to make this easier by replacing vj = σ2
wrj. When we reparametrize in this way, rj will not

depend on σ2
w.

p
(
x|φ,θ, µx, σ2

w

)
=

n∏
j=1

1√
2πσ2

wrj
exp

{
− 1

2σ2
w

(xj − x̂j)2 /rj
}
. (13)

This allows us to split estimation of the ARMA(p, q) parameter σ2
w look more like a least-

squares problem.

Last, most maximum likelihood problems are nicer to work with on the log scale, so from
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here on out we’ll work with two times the negative log-likelihood corresponding to (20),

nlog
(
σ2
w

)
+

(
n∑
j=1

log (rj)

)
+

(
1

σ2
w

n∑
j=1

(xj − x̂j)2

rj

)
, (14)

ignoring all constant terms that do not depend on the parameters of the ARMA(p, q)

model. Now, we’ll describe how three different maximum likelihood estimation procedures,

unconditional maximum likelihood, unconditional least-squares, and conditional maximum

likelihood.

Unconditional Maximum Likelihood: Unconditional maximum likelihood computes

estimates of the parameters ARMA(p, q) model by maximizing (14) as written. First, notice

that we can differentiate with respect to σ2
w to find that the optimal maximum likelihood

maximizing σ2
w is given by

σ2
w =

1

n

n∑
j=1

(xj − x̂j)2

rj
. (15)

This means that we can plug this expression for σ2
w into (14), and just worry about

finding the maximum likelihood estimates of φ1, . . . , φp, θ1, . . . , θq, and µx by minimizing:

nlog

(
n∑
j=1

(xj − x̂j)2

rj

)
+

(
n∑
j=1

log (rj)

)
. (16)

Note that φ1, . . . , φp, θ1, . . . , θq, and µx enter into (16) via x̂j and rj. Maximizing (16) over

φ1, . . . , φp, θ1, . . . , θq, and µx is a difficult nonlinear optimization problem. We’re not going

to talk about exactly how to solve it.

Once we’ve obtained estimates φ̂UM,1, . . . , φ̂UM,p, θ̂UM,1, . . . , θ̂UM,q, and µ̂x,UM from min-

imizing (16), we can recover σ̂2
w,UM by plugging x̂UM,1, . . . , x̂UM,n and r̂UM,1, . . . , r̂UM,n into

(15).

Unconditional Least Squares: Remember, we are using the reparameterized likelihood

(20) because it more closely resembles a least-squares problem. There is one term that does
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not fit into the least-squares framework -
(∑n

j=1 log (rj)
)

. This term also tends to create

extra nonlinearity that makes (14) especially challenging to solve.

Unconditional least-squares addresses this by eliminating this term altogether, and in-

stead maximizing (21)

nlog
(
σ2
w

)
+

(
1

σ2
w

n∑
j=1

(xj − x̂j)2

rj

)
. (17)

As with unconditional maximum likelihood, we can plug the least-squares σ2
w, (21),

σ2
w =

1

n− q − p− 1

n∑
j=1

(xj − x̂j)2

rj
. (18)

into (14). This lets us ignore σ2
w and focus on minimization over φ1, . . . , φp, θ1, . . . , θq, and

µx. When we ignore the terms that do not depend on φ1, . . . , φp, θ1, . . . , θq, and µx and

exponentiate again, this gives us

n∑
j=1

(xj − x̂j)2

rj
. (19)

Again, note that φ1, . . . , φp, θ1, . . . , θq, and µx enter into (19) via x̂j and rj. This can be easier

to solve than (16), although it will still be a complicated nonlinear optimization problem.

Again, we’re not going to talk about exactly how to solve it. However, we note that we

do need to explicitly constrain estimates of φ1, . . . , φp to be causal. In the unconditional

likelihood maximization, explicitly constraining φ1, . . . , φp to be causal was not necessary

because the term
∑n

j=1 log (rj) would blow up to +∞ if the constraint was violated.

Once we’ve obtained estimates φ̂UL,1, . . . , φ̂UL,p, θ̂UL,1, . . . , θ̂UL,q, and µ̂x,UL from minimiz-

ing (19), we can recover σ̂2
w,UL by plugging x̂UL,1, . . . , x̂UL,n and r̂UL,1, . . . , r̂UL,n into (18).

Conditional Least Squares: There is one more way we can modify the maximum like-

lihood problem to make it even simpler. Let’s go back to the likelihood (20). We could

condition on the first m = max {p, q} values of the time series. Conveniently, when we con-

dition on the first m values, rj becomes constant because we can forecast any xj equally well
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if we observed at least m previous values. Setting rj = r and conditioning on x1, . . . , xm,

the conditional likelihood is

p
(
xm+1, . . . , xn|x1, . . . , xmφ,θ, µx, σ2

w

)
= (20)

n∏
j=m+1

1√
2πσ2

wr
exp

{
− 1

2σ2
wr

(xj − x̂j)2
}
.

Dropping the 1√
r

term that does not fit into the least-squares framework as well as the

rest of the terms that do not depend on the ARMA(p, q) parameters, taking the log and

multiplying by negative two, the conditional least-squares estimates of φ1, . . . , φp, θ1, . . . , θq,

µx, and σ2
w will minimize:

(n−m) log
(
σ2
w

)
+

(
1

σ2
wr

n∑
j=m+1

(xj − x̂j)2
)
. (21)

Just like we did with the unconditional maximum likelihood and unconditional least-

squares problems, we can The least-squares σ2
w is given by

σ2
w =

1

r (n−m− q − p− 1)

n∑
j=m+1

(xj − x̂j)2 . (22)

Plugging this into (21), dropping terms that do not depend on φ1, . . . , φp, θ1, . . . , θq, and

µx and exponentiating yields a straightforward least-squares criterion that we can maximize

over φ1, . . . , φp, θ1, . . . , θq, and µx,

1

r

n∑
j=m+1

(xj − x̂j)2. (23)

Once more, note that φ1, . . . , φp, θ1, . . . , θq, and µx enter into (23) via x̂j and r.

As in the unconditional least-squares case, we will need to explicitly constrain φ1, . . . , φp

to be causal because nothing in (23) prevents a minimum value being achieved at non-

causal φ1, . . . , φp. Once again, for general ARMA(p, q) models (23) will not be linear in

the ARMA(p, q) parameters φ1, . . . , φp, θ1, . . . , θq, and µx. As such, minimizing (23) will

require nonlinear optimization methods, the details of which are beyond the scope of this
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class.

Once we’ve obtained estimates φ̂CL,1, . . . , φ̂CL,p, θ̂CL,1, . . . , θ̂CL,q, and µ̂x,CL from minimiz-

ing (23), we can recover σ̂2
w,CL by plugging x̂CL,1, . . . , x̂CL,n and r̂CL,1, . . . , r̂CL,n into (22).

There is one special case where (23) is linear in the unknown parameters - the AR (p)

model. In this case, m = p. When we were deriving the the Yule-Walker equations for the

AR (p) model, we saw that the forecasts are given by x̂j = µx +
∑p

k=1 φk (xj−k − µx) for

j > p. Under the AR (p) model, it is easy to see that

rj = E
[
(xj − x̂j)2 |xj−1, . . . , xj−p

]
/σ2

w

= E

(xj − µx − p∑
k=1

φk (xj−k − µx)

)2

|xj−1, . . . , xj−p

 /σ2
w = 1.

Then (23) simplifies to

n∑
j=m+1

(
xj − µx −

p∑
k=1

φk (xj−k − µx)

)2

. (24)

The equation (24) is the same as the least-squares objective we would get if we regressed

x̃ = (xp+1, . . . , xn) on a intercept 1n−p and (n− p) × p design matrix Z with elements

made up of lagged values zij = xp+i−j. This means that conditional maximum likelihood

estimation of φ1, . . . , φp under an AR (p) model can be performed using standard regression

techniques!

Even better, it turns out that the conditional least-squares estimates φ̂CL,1, . . . , φ̂CL,p,

µ̂x,CL, and σ̂2
w,CL are very similar to the Yule-Walker estimates φ̂YW,1, . . . , φ̂YW,p, µ̂x,Y W , and

σ̂2
w,YW . This is easiest to see when we x = 0 and we assume that µx = 0. Then

φ̂CL = (Z ′Z)
−1
Z ′x̃ =

(
1

n− p
Z ′Z

)−1(
1

n− p
Z ′x̃

)
. (25)

The jk-th elements of 1
n−pZ

′Z are given by 1
n−p

∑n
i=m+1 xi−jxi−k, and the j-th element of

1
n−pZ

′x̃ is given by 1
n−p

∑n
i=m+1 xi−jxi. These are sample autocovariances computed from

x̃! The only difference between φ̂CL computed from (25) and φ̂YW computed from (3) is
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whether or not the first p elements of x are used to compute the sample autocorrelations!

Asymptotic Distributions: Conveniently, all three of these maximum likelihood esti-

mation procedures yield estimators with the same asymptotic distributions. This means

that the behavior of our estimators won’t depend much on whether we use unconditional

maximum likelihood, unconditional least squares, or conditional least squares as long as n

is large, i.e. we observe a long time series. Specifically, as n→∞

√
n


 φ̂

θ̂

−
 φ

θ


 d→ N

0,

 Σφφ Σφθ

Σθφ Σθθ


 ,

where Σφφ is a p× p matrix, Σφθ is a p× q matrix, Σθφ is a q× p matrix, and Σθθ is a q× q

matrix. We can derive the elements of the covariance matrix Σ by introducing the AR (p)

and AR (q) processes

ut = φ1ut−1 + · · ·+ φput−p + wt

vt = −θ1vt−1 − · · · − θpvt−q + wt.

The elements of the covariance matrix are given by

σφφ,ij = E
[
utut−(i−j)

]
σφθ,ij = σθφ,ji = E

[
utvt−(i−j)

]
σθθ,ij = E

[
vtvt−(i−j)

]
.

Model Selection

Moment-Based

If we are fitting an AR(p) or MA(q) model, we can actually figure out which coefficients

to keep based on the sample partial-autocorrelations or the sample autocorrelations, re-

spectively. Letting v ∼ N (0, 1), we previously learned that the sample autocorrelation is
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approximately normal γ̂x (h) ≈ v/
√
n under the null hypothesis that γx (h) = 0 as n → ∞.

Noting that γx (h) = 0 when h > q if x is distributed according to a MA (q) model, this

allows us to select the order of a MA model based on the sample autocorrelations.

Similarly,

ĉjj ≈ v/
√
n, v ∼ N (0, 1) (26)

when j > p and x is distributed according to an AR (p) model as n → ∞. This allows us

to select the order of a AR model based on the sample partial autocorrelations.

It isn’t quite so simple if we want to fit an ARMA(p, q) model. In that case, we’ll want

to consider maximum-likelihood based methods.

Likelihood-Based

Recall our definitions of AIC, AICc and SIC/BIC. We can compute select p and q by finding

the values that minimize one of these quantities.

• AIC = ln
(
σ̂2
w,UM

)
+ n+2(p+q+1)

n
.;

• AICc = ln
(
σ̂2
w,UM

)
+ n+p+q+1

n−p−q−1−2 ;

• SIC = ln
(
σ̂2
w,UM

)
+ (p+q+1)log(n)

n
.

Other

We won’t discuss these methods in detail in class, but some other ways one might select the

order of an ARMA(p, q) model include choosing the values of p and q:

• To minimize k-step-ahead forecasting error (kind of like leave-k-out cross validation);

• According to other diagnostics, e.g. smallest values of p and q that yield residuals that

“appear” independent or fail to reject a null hypothesis of independence;
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• Based on F -tests if using conditional likelihood to obtain estimates of φ for AR(p)

models, taking care to fit all models to the same n− pmax observations, where pmax is

the largest order being considered.
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