
Non-Stationarity

March 22, 2019

The material in this set of notes is based on S&S Chapter 3, Sections 3.7-3.9, and

S&S Chapter 5, with the exception of the material on non-stationarity tests based on

ARIMA(p, d, q) models. This material is based on Section 2.7.5 of Tsay (2010), as well

as several published journal articles introducing and reviewing these tests:

• Dickey and Fuller (1981), “Likelihood Ratio Statistics for Autoregressive Time Series

with a Unit Root”;

• Said and Dickey (1984), “Testing for unit roots in autoregressive-moving average mod-

els of unknown order”;

• Said and Dickey (1985), “Hypothesis Testing in ARIMA(p, 1, q) Models”;

• Phillips and Perron (1988), “Testing for a unit root in time series regression”;

• Schwert (1989), “Tests for Unit Roots: A Monte Carlo Investigation”.

I don’t expect you to all to read them, but I thought they actually offered clearer explanations

of what these tests are doing than the textbooks I have looked at so I wanted to share them

as useful resources for anyone who is curious.
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Review

Let’s think back to when we first introduced the concept of stationarity. We defined a

stationary time series xt as having finite second moments, i.e. E [x2t ] < ∞ for all t, a

constant mean function, µx,t = µx, and an autocovariance function κx(s, t) that depends on

s and t only through their absolute difference h = |s − t|. So far, we’ve just been using

stationary models and crossing our fingers and hoping that our data is stationary. Now we’ll

start thinking about:

• How to assess whether or not a specific observed time series x is stationary;

• What kind of models to use if we conclude that an observed time series x is not

stationary.

We’ll see that these ideas are related.

A basic first step to assessing stationarity is always to just plot the time series and examine

it carefully, assessing whether or not it looks like the mean and variance are constant over the

entire time interval. Some further exploratory analysis can be performed by binning the data

and examining how the bin means and variances change - if the time series corresponds to a

stationary process and each bin contains enough observations, the bin means and variances

should all be very similar and should not display any systematic trends.

If we want to take a more sophisticated approach to assessing stationarity, we might want

to consider a parametric model for the data, where the parameter values determine whether

or not the model is stationary. This will allow us to develop a hypothesis test for non-

stationarity. When we do this, we’ll tend to consider two different types of non-stationarity

(1) non-stationarity of the mean and (2) non-stationarity of the variance.
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Mean Non-Stationarity

The ARIMA(p, d, q) Model

The workhorse (most commonly used) model for data that displays non-stationarity of the

mean is the ARIMA(p, d, q) model, which generalizes the ARMA(p, q) model that we are

already familiar with. Let’s introduce some new notation first, because we’re going use

the idea of differencing a time series to define the ARIMA(p, d, q) model. We introduce a

differencing operator ∇d defined according to:

∇xt = xt − xt−1

∇2xt = ∇xt −∇xt−1 = xt − 2xt−1 + xt−2

∇3xt = ∇2xt −∇2xt−1 = xt − 3xt−1 + 3xt−2 − xt−3
...

∇kxt = ∇k−1xt −∇k−1xt−1.

Differencing is a very useful concept because it can be used to address certain kinds

of mean non-stationarity. We can show this via a few simple examples. Suppose that we

observe a nonstationary time series with a linear trend in time

xt = a+ bt+ wt,

where wt
i.i.d.∼ N (0, σ2

w). What happens if we difference the observed time series? We obtain

∇xt =a+ bt+ wt − (a+ b (t− 1) + wt−1)

=b+ wt − wt−1.

This is a MA (1) process with mean b, so we get a stationary process!

What if we’d had an even more complicated trend over time, e.g. a quadratic trend,

xt = a+ bt+ ct2 + wt.
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What happens if we difference the observed time series in this case? We obtain

∇xt =a+ bt+ ct2 + wt −
(
a+ b (t− 1) + c (t− 1)2 + wt−1

)
=b+ 2ct+ c+ wt − wt−1.

This isn’t stationary yet - we still have a linear trend in time. What if we difference again?

∇2xt =∇xt −∇x−1

= (b+ 2ct+ c+ wt − wt−1)− (b+ 2c (t− 1) + c+ wt−1 − wt−2)

=2c+ wt − 2wt−1 + wt−2.

This is a MA (2) process with mean 2c, so again we get a stationary process!

In general, ∇kxt will be stationary if

xt = a0 + a1t+ a2t
2 + · · ·+ akt

k + wt,

where a0, a1, . . . , ak are the coefficients of a degree-k polynomial time trend and wt is sta-

tionary!

This leads us to the definition of the ARIMA(p, d, q) model. A process xt is said to be

ARIMA(p, d, q) if

φ (B)
(
∇dxt − µ

)
= θ (B)wt, (1)

where wt
i.i.d.∼ N (0, σ2

w) and µ = E
[
∇dxt

]
. This means that the differenced time series∇dxt is

an ARMA(p, q) process. The ARIMA(p, d, q) model generalizes the ARMA(p, q) model,

insofar as setting d = 0 yields an ARMA(p, q) model. The ARIMA(p, d, q) model gives

us a parametric framework for assessing stationarity - if d = 0, xt is a stationary process,

whereas if d > 0 xt is non-stationary. This leads us to the three tests of non-stationarity.

• The Dickey-Fuller test tests the null hypothesis H that xt is an ARIMA (0, 1, 0) pro-

cess against the alternative hypothesis that xt is a stationary ARMA (1, 0, 0) process.
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It assumes that

∇xt = a+ κxt−1 + wt, (2)

where wt
i.i.d.∼ N (0, σ2

w). The null and alternative hypotheses can be equivalently

expressed as κ = 0 and κ 6= 0, respectively. The test statistic is the t-statistic κ̂/se (κ̂)

for the the least-squares estimate κ̂ based on (2), and the approximate distribution of

κ̂ under the null as n → ∞ is the Dickey-Fuller distribution. This is a non-standard

distribution, but the relevant quantiles have been derived. Although useful, this test

is of limited utility because the alternative hypothesis is very restrictive - what if xt is

a stationary ARMA(2, 0, 0) or ARMA(1, 0, 1) process?

• The Augmented Dickey-Fuller test addresses this limitation by testing the null

hypothesis that xt is an ARIMA (p, 1, 0) process against the alternative hypothesis

that xt is an ARMA (p+ 1, 0, 0) process. It assumes that

∇xt = a+ κxt−1 + φ1∇xt−1 + · · ·+ φp∇xt−p + wt, (3)

where wt ∼
i.i.d.∼ N (0, σ2

w). Clearly, if κ = 0, then xt is an ARIMA (p, 1, 0). If κ 6= 0,

we can rewrite the equation as a stationary ARIMA (p+ 1, 0, 0) process,

xt = a+ (1 + κ+ φ1)xt−1 + (φ2 − φ1)xt−2 + · · ·+ (φp − φp−1)xt−p − φpxt−p−1 + wt.

The order p is usually chosen by using AIC, AICc, or SIC/BIC to choose select the

“best” ARIMA (p, 1, 0) for xt. Once the order p has been chosen, the test statistic

is the t-statistic κ̂/se (κ̂) for the the least-squares estimate κ̂ based on (3), and the

approximate distribution of κ̂ under the null as n → ∞ is still the Dickey-Fuller

distribution. This is a much more useful test than the original Dickey-Fuller test,

because the alternative hypothesis is the larger class of ARIMA (p+ 1, 0, 0) models

with p > 0. Furthermore, because many ARIMA (p+ 1, 0, q) processes can be well

approximated using ARIMA (k, 0, 0) processes for some value of k, we can think of
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the alternative hypothesis also approximately including ARIMA (p+ 1, 0, q) models!

This means that the augmented Dickey-Fuller test basically approximately works as a

test of the null hypothesis that xt is an ARIMA (p, 1, q) process against the alternative

hypothesis that xt is an ARMA (p+ 1, 0, q) process.

• The Phillips-Perron test is motivated by the concern that although many

ARIMA (p+ 1, 0, q) processes can be well approximated using ARIMA (k, 0, 0) pro-

cesses for some value of k, k may need to be too large for this to be practically useful.

It tests an even more general null hypothesis against a more general alternative hy-

pothesis, specifically it tests the null hypothesis that ∇xt is a stationary process (and

xt is not) against the alternative hypothesis that xt is a stationary process. We can

think of this assuming that

xt − xt−1 = a+ κxt−1 + wt, (4)

where wt is a stationary process, with a finite number L of nonzero autocorrelations

and slightly nonconstant variance. The number L is often chosen in practice as a deter-

ministic function of the length of the time series, n. The test statistic is computed from

the residuals from the linear regression based on (4), and the approximate distribution

of the test statistic under the null as n→∞ is still the Dickey-Fuller distribution.

The greater generality offered by the Phillips-Perron test does not come for free! Mak-

ing fewer assumptions about how xt behaves under the alternative can mean that we

may need more data for the test statistic to be approximately Dickey-Fuller distributed

under the null, i.e. for the test to actually perform the way we want it to.

These tests are often used to choose the differencing parameter d of ARIMA(p, d, q)

given an observed time series x. Note that it isn’t appropriate to choose d using AIC, AICc,

SIC/BIC, because differencing reduces the number of available observations, so ARIMA

models with different values of d are fit using different numbers of observations. We can use
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one of these non-stationarity tests to select d by specifying a desired level α, e.g. α = 0.05,

and then proceeding as follows:

(i) Conduct a level-α test of non-stationarity of xt.

– Fail to reject non-stationarity =⇒ Set k = 1, proceed to (ii).

– Reject non-stationarity =⇒ STOP, set d = 0.

(ii) Conduct a level-α test of non-stationarity of ∇kxt.

– Fail to reject non-stationarity =⇒ Set k = k + 1, proceed to (ii).

– Reject non-stationarity =⇒ STOP, set d = k.

Once an order d has been selected, the same approaches that we used to select p and q

for ARMA(p, q) models, e.g. minimizing AIC, AICc, SIC/BIC, can be used because we can

assume that ∇dxt can be treated as an r ARMA(p, q) process.

Forecasting based on an ARIMA(p, d, q) model is not as straightforward. Recall that

we previously derived forecasts by minimizing expected forecast error:

E

(xn+1 −

(
n∑
j=1

cnjxn+1−j

))2
 = E

[
x2n+1

]
+ c′nAncn − 2c′nbn,

where an,ij = E [xn+1−ixn+1−j] and bn,i = E [xn+1xn+1−i]. When we did this previously,

we assumed that x was stationary which made An and bn easy to compute because both

have nice, simple forms that only depend on how far apart any two values xt and xs are

in time: E [xn+1−ixn+1−j] = γx (i− j) and E [xn+1xn+1−i] = γx (i). When we allow x to be

non-stationary and assume an ARIMA(p, d, q) model for x with d > 0, then the entries

of An and bn may not have the same nice form because the autocovariances may depend

on the actual time indices of the values. Fortunately, we can rewrite each value of the time

series xt as:

xt = x0 +
t∑
i=1

∇dxi.
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Then the forecasting equation is still quadratic in cn and can be expressed as

E

(x0 +
n+1∑
i=1

∇dxi −

(
n∑
j=1

cnj

(
x0 +

n+1−j∑
i=1

∇dxi

)))2
 ,

which will depend on the covariances E
[
x0∇dxi

]
for i > 0 and E

[
∇dxi∇dxj

]
. If we assume

that E
[
x0∇xdi

]
= 0, then it will just depend on the autocovariances E

[
∇dxi∇dxj

]
, which we

can obtain easily because we have assumed that∇dxt is stationary. We won’t do this by hand

in class because expanding all the terms of the forecasting equation for an ARIMA(p, d, q)

model is very tedious even when E
[
x0∇xdi

]
= 0, instead we’ll rely on statistical software to

obtain forecasts and forecast errors for us.

Using ARIMA to Address Seasonality with SARIMA(p, d, q)× (pl, dl, ql)

In practice, we often encounter data that has seasonal trends in time that induce mean non-

stationarity. Letting s be an n× 1 vector with entries st that take on l possible consecutive

values c1, . . . , cl and satisfy st−l = st for all l > (t− 1) and which indicate the season during

which observation xt was observed.

xt =
l∑

j=1

bj1{st=cj} + wt,

where wt is stationary. Then the seasonally differenced process

∇lxt =
l∑

j=1

bj1{st=cj} + wt −
l∑

j=1

bj1{st−l=cj} − wt−l = wt − wt−l,
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is stationary! We introduce some new notation for this - if l is the number of season values

s can take on, then

∇lxt = xt − xt−l

∇2
l xt = ∇sxt −∇sxt−l,

. . .

∇d+1
l xt = ∇d

sxt −∇d
sxt−l,

and so on.

One way to address this to extend our ARIMA(p, d, q) models to include seasonal dif-

ferencing. We call this a SARIMA(p, d, q)× (pl, dl, ql) model, and it is given by

φ̃
(
Bl
)
φ (B)

(
∇dl
l ∇

dxt − µ
)

= θ̃
(
Bl
)
θ (B)wt, (5)

where wt
i.i.d.∼ N (0, σ2

w). This becomes a bit complicated, as there are now the set of param-

eters is much larger, specifically µ, σ2
w, θ1, . . . , θq, φ1, . . . , φp, θ̃1, . . . , θ̃ql , and φ̃1, . . . , φ̃pl.

Let’s work through an example for a time series xt that is observed monthly and dis-

plays a linear trend in time as well as seasonality, insofar as measurements from the same

month across different years xt and xt−12, are similar. We might want to consider an

SARIMA(1, 1, 1)× (1, 1, 1) model with µ = 0, which assumes

(
1− φ̃1B

12
)

(1− φ1B)∇12∇xt =
(

1 + θ̃1B
12
)

(1 + θB)wt, (6)

where wt
i.i.d.∼ N (0, σ2

w). We can simplify the terms one at a time.The term ∇12∇xt first

computes the first difference ∇xt = xt − xt−1 and then computes the annual differences of

the first differences,

∇12∇xt = ∇12 (xt − xt−1) = xt − xt−12 − (xt−1 − xt−13) .

This means that the SARIMA(1, 1, 1)×(1, 1, 1) model assumes that the annual differences of

the first differences are stationary. The polynomials can be expanded
(

1− φ̃1B
12
)

(1− φ1B)
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and
(

1 + θ̃1B
12
)

can simply be expanded out using the fact that BiBj = Bi+j,

(
1− φ̃1B

12
)

(1− φ1B) = 1− φ̃1B
12 − φ1B + φ1φ̃1B

13(
1 + θ̃1B

12
)

(1− θ1B) = 1 + θ̃1B
12 + θ1B + θ1θ̃1B

13.

Putting it altogether yields one big complicated model! We can expand the terms in (6) to

(
1− φ̃1B

12 − φ1B + φ1φ̃1B
13
)

(xt − xt−12 − (xt−1 − xt−13)) =(
1 + θ̃1B

12 + θ1B + θ1θ̃1B
13
)
wt.

We could expand this out further, but this is a much more interpretable form that looks

more like the models we have seen before and further simplification would make things much

messier.

Adding a Time Trend

Another way of addressing nonstationarity of the mean is to explicitly model a trend over

time, and assume that deviations from that trend are stationary. We alluded to this when

we introduced the idea of differencing. We saw that if a time series has a linear trend in

time,

xt = a+ bt+ wt, (7)

and errors wt
i.i.d.∼ N (0, σ2

w) that are stationary about the mean, then the first differences

∇xt = xt − xt−1 will be stationary. Alternatively, we could continue to analyze the data on

the original scale but explicitly model and then extract a linear trend in time.

However, we need to be careful when deciding whether or not to include a linear trend,

because a time series that is stationary about a linear trend can look very similar to a non-

stationary ARMA (p, q) time series. Fortunately, all of the tests we discussed previously

have been extended to allow us to test the null hypothesis that xt is non-stationary about
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a linear trend against the alternative hypothesis that xt is stationary about a linear trend!

We won’t go into the details, but most statistical software that implements the Augmented

Dickey-Fuller or Phillips-Perron test the has an option to include or exclude a time trend.

Variance Non-Stationarity

Variance-Stablizing Transformations

The simplest thing we can do to address non-stationarity of the variances over the time series

is to perform a variance stabilizing transformation on the raw data xt before continuing any

further and applying any time series models. This is appropriate when the variances are

monotonically increasing or decreasing over time. The Box-Cox power family of transforma-

tions

yt =


(
xλt − 1

)
/λ λ 6= 0

log (xt) λ = 0

are often used, where the parameter λ is chosen to make the variance of yt as nearly constant

as possible over time. In practice, λ = 0 or λ = 1/2 are often chosen. We can then

apply any of our time series models to the transformed time series yt. Forecasting can be

performed by computing forecasts ŷn+k for k > 0 and then using the inverse of whatever

transformation function was applied to obtain x̂n+k. Variance-stabilizing transformations

can be very useful, but be warned that applying them can lead to biased forecasts on

the original scale, x̂n+k. See Guerrero (1993), “Time-series analysis supported by power

transformations” for a discussion of one popular approach to choosing a transformation and

debiasing the corresponding forecasts.
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GARCH and ARCH Models

When we observe non-stationary variances that they are not monotonically increasing or

decreasing in time but rather alternating between low- and high-variance periods we may

want to explicitly model the variances. A common model for this kind of non-stationarity is

the generalized ARCH (GARCH) model, which includes the simpler ARCH model as

a special case. A GARCH(m, r) model for a time series xt is given by:

xt =σtet (8)

σ2
t =α0 + α1x

2
t−1 + · · ·+ αmx

2
t−m + β1σ

2
t−1 + · · ·+ βrσ

2
t−r,

where et
i.i.d.∼ N (0, 1). Note that without imposing some conditions on α0, α1, . . . , αm, we

cannot be sure that the GARCH(m, r) model is well defined. By well defined, we mean that

GARCH(m, r) model only produces nonnegative conditional variances σ2
t and corresponds

to a causal model for the time series xt.

The ARCH (m) model is obtained by setting r = 0. If we want to ensure that the

ARCH (m) model is well defined, we need to impose conditions on the coefficients α0, α1, . . . , αm.

One set of such conditions is:

(?) α0, α1, . . . , αm ≥ 0;

(†)
∑m

i=1 αi < 1.

The condition (?) ensures that the variances σ2
t are nonnegative, whereas the condition (†)

ensures that the model for xt is causal. The latter condition (†) makes sense intuitively when

we realize that we can think of the ARCH(m) as an AR (m) model for the variances σ2
t .

Let’s work through a little example of an ARCH (1) model first to get some intuition.

• The ARCH (1) process is mean-zero,

E [xt] = E [σtet] = E [σt]E [et] = 0.

• V [xt|σ2
t ] = E [σ2

t e
2
t |σ2

t ] = σ2
t ;
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• The variance process over time is stationary with unconditional variance

E
[
σ2
t

]
= α0 + α1E

[
E
[
x2t−1|σ2

t

]]
= α0 + α1E

[
σ2
t−1
]

E
[
σ2
t

]
=

α0

1− α1

γx (0) =
α0

1− α1

.

• Consecutive values of xt are uncorrelated,

γx (h) = E [xtxt−h] = E [σtσt−hetet−h] = E [σtσt−h]E [et]E [et−h] = 0.

• Consecutive values of x2t are correlated,

γx2 (h) = αh1 .

For GARCH(m, r) models with orders m and r > 0, we are not able to easily char-

acterize the conditions that must be imposed for the GARCH(m, r) model to be

well defined. We can think of a GARCH(m, r) model for xt as being closey re-

lated to an ARMA(max (m, r) , r) process for x2t , where the noise wt corresponds to

vt = x2t − σ2
t = σ2

t (e2t − 1). Showing this takes some algebra:

x2t =σ2
t + vt

x2t =α0 + α1x
2
t−1 + · · ·+ αmx

2
t−m + β1σ

2
t−1 + · · ·+ βrσ

2
t−r + vt

x2t =α0 + α1x
2
t−1 + · · ·+ αmx

2
t−m + β1

(
x2t−1 − vt−1

)
+ · · ·+ βr

(
x2t−r − vt−r

)
+ vt

x2t =


α0 +

(∑r
i=1 βivt−i + (αi + βi)x

2
t−i
)

+
(∑m

i=r+1 αix
2
i

)
+ vt m > r

α0 +
(∑r

i=1 βivt−i + (αi + βi)x
2
t−i
)

+ vt m = r

α0 +
(∑m

i=1 βivt−i + (αi + βi)x
2
t−i
)

+
(∑r

i=m+1 βivt−i + βix
2
t−i
)

+ vt m < r.

Note that this is not quite an ARMA(max (m, r) , r) process because the noise is not
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σ2
t (e2t − 1) is not normal.

Maximum Likelihood Estimation

Let k = max (m, r). Because each xt is conditionally normally distributed given

x1, . . . , xt−k for t > k with mean zero and variance σ2
t , we can estimate the unknown

parameters by maximum likelihood, where the likelihood is given by:

p (xk+1, . . . , xn) =
m∏

t=k+1

1√
2πσ2

t

exp

{
−1

2

(
x2t
σ2
t

)}
.

This can be difficult to do computationally in practice, because the parameters enter

into the likelihood nonlinearly. Alternatively, we can just use our ARMA tools to get

an approximate estimate of the GARCH(m, r) parameters, because a GARCH(m, r)

process for xt is closely related to an ARMA(max (m, r) , r) process for x2t with pa-

rameters that are simple linear functions of the GARCH(m, r) parameters.

Combining ARCH and GARCH with ARMA

We can add additional time dependence into a GARCH(m, r) model by adding an

ARMA(p, q) model as well:

φ (B) (xt − µx) =θ (B) (wt) + σtet (9)

σ2
t =α0 + α1e

2
t−1 + · · ·+ αme

2
t−m + β1σ

2
t−1 + · · ·+ βrσ

2
t−r,

where et
i.i.d.∼ N (0, 1) and wt

i.i.d.∼ N (0, σ2
w).

This looks very complicated, but we can actually estimate the parameters of this model

reasonably well in an ad-hoc but effective way just using the arima and garch functions

from the stats and tseries packages for R by:

– Fitting an ARMA(p, q) model to the data xt and computing residuals rt;
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– Fitting a GARCH(m, r) model to the residuals rt.

More sophisticated simultaneous estimation is more computationally challenging, but

can be performed using the rugarch package for R.
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