Notes 10

Maryclare Griffin

These notes are based on Chapters 2 and 6 of KNNL.

We will continue to assume the **normal error linear regression model** for a dependent variable or response Y and independent variables, predictors, or covariates X_1, \ldots, X_{p-1} is defined as:

$$Y = Xeta + \epsilon$$

where:

• The elements of
$$\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix}$$
 are parameters
• The elements of the $n \times p$ matrix $\boldsymbol{X} = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \dots & X_{2,p-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{11} & X_{12} & \dots & X_{1,p-1} \end{pmatrix}$ are known constants
• $\boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$ is a random error term elements that are ϵ_i that are independent and normally distributed
with mean $E \{\epsilon_i\} = 0$ and variance $\sigma^2 \{\epsilon_i\} = \sigma^2$.

Under the normal error linear regression model, we have shown that the studentized statistic

$$\frac{b_k - \beta_k}{s \{b_k\}} \sim t \left(n - p \right),$$

where t(n-p) refers to a t distribution with n-p degrees of freedom.

This allows us to formally test a null hypothesis of the form H_0 : $\beta_k = c$ versus an alternative hypothesis of the form H_a : $\beta_k \neq c$, for some pre-specified value c. In the previous set of notes, we did this in an informal way for c = 0 by visually comparing $\frac{b_k - c}{s\{b_k\}}$ to the density of a t distribution with n - p degrees of freedom, and concluding that the null H_0 was unlikely to be true.

To formally test this null hypothesis, we will find an interval that contains $\frac{b_k-c}{s\{b_k\}}$ with probability $1-\alpha$ when the null H_0 is true, and conclude the alternative H_a if $\frac{b_k-c}{s\{b_k\}}$ is outside of that interval. We will call α the **level** of the test or the **Type I error**. The **level** of the test, α , describes the probability of concluding the alternative H_a when the null H_0 is true. Remember, if the null H_0 is true, then $\frac{b_k-c}{s\{b_k\}}$ has a t distribution with n-p degrees of freedom. Let $t(\alpha/2; n-p)$ refer to the $\alpha/2$ quantile of a t distribution with n-p degrees of freedom and let $t(1 - \alpha/2; n-p)$ refer to the $1 - \alpha/2$ quantile of a t distribution with n-p degrees of freedom. The interval $[t(\alpha/2; \nu), t(1 - \alpha/2; \nu)]$ will contain $\frac{b_k-c}{s\{b_k\}}$ with probability $1 - \alpha$ when the null H_0 is true.

Note: Let $t(\nu)$ be a random variable distributed according to a t distribution with ν degrees of freedom. The α quantile of a t distribution with ν degrees of freedom is denoted by $t(\alpha; \nu)$, and defined as satisfying:

$$P(t(\nu) \le t(\alpha; \nu)) = \alpha.$$

Under the normal errors linear regression model, the decision rule based on a the test statistic $\frac{b_k - c}{s\{b_k\}}$ for a level $1 - \alpha$ test of the null hypothesis H_0 : $\beta_k = c$ versus the alternative hypothesis H_a : $\beta_k \neq c$ is:

- If t (α/2; n − p) ≤ b_k-c/s{b_k} ≤ t (1 − α/2; n − p), conclude the null H₀
 If b_k-c/s{b_k} < t (α/2; n − p) or b_k-c/s{b_k} > t (1 − α/2; n − p), conclude the alternative H_a

Note: We can think of a test of the null hypothesis H_0 : $\beta_k = 0$ versus the alternative hypothesis $H_a: \beta_k \neq 0$ as a test of the null hypothesis that there is no linear statistical association between the response Y and the predictor X_k given the remaining predictors are included in the model versus the alternative hypothesis that there is a linear association between the response Y and the predictor X_k given the remaining predictors are included in the model.

We can make this simpler using a nice property of the t distribution.

Note: The t distribution with ν degrees of freedom is symmetrical about 0. As a result, $-t(\alpha/2; n-p) = t(1-\alpha/2; n-p).$

Under the normal errors linear regression model, we can alternatively say that the decision rule based on a the test statistic $\frac{b_k - c}{s\{b_k\}}$ for a level $1 - \alpha$ test of the null hypothesis H_0 : $\beta_k = c$ versus the alternative hypothesis $H_a: \beta_k \neq c$ is:

- If $\left|\frac{b_k c}{s\{b_k\}}\right| \le t (1 \alpha/2; n p)$, conclude the null H_0 If $\left|\frac{b_k c}{s\{b_k\}}\right| > t (1 \alpha/2; n p)$, conclude the alternative H_a

Example 1: Again, consider data from a company that manufactures refrigeration equipment, called the Toluca company. They produce refrigerator parts in lots of different sizes, and the amount of time it takes to produce a lot of refrigerator parts depends on the number of parts in the lot and several other variable factors. Let X be the number of refrigerator plots in a lot, and let Y refer to the amount of time it takes to produce a size of lot X. Suppose a cost analyst in the Toluca Company is interested in testing whether or not there is a linear association between work hours and lot size, i.e. the null hypothesis H_0 : $\beta_1 = 0$ at level $\alpha = 0.05$.

load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/toluca.RData")

```
n <- nrow(data) # Extract number of observations</pre>
Y <- data$Y # Extract response
X <- data$X # Extract predictor
linmod <- lm(Y~X) # Fit linear model</pre>
b1 <- linmod$coef[2]</pre>
s.b1 <- summary(linmod)$coef[2, 2]</pre>
alpha <- 0.05
tquantile <- qt(1 - alpha/2, n - 2)
```

We obtain $b_1 = 3.57$ and $s\{b_1\} = 0.347$. Accordingly, the test statistic is $b_1/s\{b_1\} = 10.29$. We compare this to the 0.975 quantile of a t distribution with 23 degrees of freedom, t(0.975; 23) =2.069. Because the test statistic b_1/s { b_1 } exceeds t (0.975;23), we conclude H_a : $\beta_1 \neq 0$, i.e. we conclude that there is evidence of a linear association between work hours and lot size at level $\alpha=0.05.$

When we are performing a test, it can also be helpful to compute the corresponding *p*-value, which is the probability of observing a test statistic that is more extreme than the observed value if the null H_0 is true. When we are performing a level $1 - \alpha$ test of the null hypothesis H_0 : $\beta_k = c$ versus the alternative hypothesis H_a : $\beta_k \neq c$, the *p*-value is

$$\begin{split} P\left(t\left(n-p\right)<-\left|\frac{b_{k}-c}{s\left\{b_{k}\right\}}\right| \text{ or } t\left(n-p\right)>\left|\frac{b_{k}-c}{s\left\{b_{k}\right\}}\right|\right) &= P\left(t\left(n-p\right)<-\left|\frac{b_{k}-c}{s\left\{b_{k}\right\}}\right|\right)+P\left(t\left(n-p\right)>\left|\frac{b_{k}-c}{s\left\{b_{k}\right\}}\right|\right) \\ &= 2P\left(t\left(n-p\right)<-\left|\frac{b_{k}-c}{s\left\{b_{k}\right\}}\right|\right). \end{split}$$

The last line is a simplification that follows from the symmetry of a t distribution with ν degrees of freedom about 0.

Example 2: Consider the same data. What is the *p*-value of the test of whether or not there is a linear association between work hours and lot size, i.e. the *p*-value of the test of the the null hypothesis H_0 : $\beta_1 = 0$?

pvalue <- 2*pt(-abs(b1/s.b1), n - 2)</pre>

We obtain a *p*-value of $4.4488276 \times 10^{-10}$.

Note: We **never** say that a *p*-value is 0. When a *p*-value is extremely small, we either provide the value as we do above, write $p < 10^{-3}$, or write p = 0+.

We can also conduct **one-sided tests** of the form H_0 : $\beta_k = 0$ versus the alternative H_a : $\beta_k > 0$ or H_0 : $\beta_k = 0$ versus the alternative H_a : $\beta_k < 0$. These are rarely used in practice, so we will not discuss them here.

The last thing we will discuss is obtaining a $100 \times (1 - \alpha)\%$ confidence interval for β_k . Because we know that $\frac{b_k - \beta_k}{s\{b_k\}}$ follows a t distribution with n - p degrees of freedom, the following holds for all probabilities α :

$$P\left(t\left(\alpha/2;n-p\right) \le \frac{b_k - \beta_k}{s\left\{b_k\right\}} \le t\left(\alpha/2;n-p\right)\right) = 1 - \alpha.$$

Let's rearrange the terms, to see if we can get an inequality for β_k .

$$P\left(t\left(\alpha/2; n-p\right) \le \frac{b_k - \beta_k}{s\left\{b_k\right\}} \le t\left(1 - \alpha/2; n-p\right)\right) = P\left(t\left(\alpha/2; n-p\right)s\left\{b_k\right\} \le b_k - \beta_k \le t\left(1 - \alpha/2; n-p\right)s\left\{b_k\right\}\right)$$

$$= P\left(t\left(\alpha/2; n-p\right)s\left\{b_k\right\} - b_k \le -\beta_k \le t\left(1 - \alpha/2; n-p\right)s\left\{b_k\right\} - b_k\right)$$

$$= P\left(b_k - t\left(1 - \alpha/2; n-p\right)s\left\{b_k\right\} \le \beta_k \le b_k - t\left(\alpha/2; n-p\right)s\left\{b_k\right\}\right)$$

$$= P\left(b_k + t\left(\alpha/2; n-p\right)s\left\{b_k\right\} \le \beta_k \le b_k - t\left(\alpha/2; n-p\right)s\left\{b_k\right\}\right)$$

The last step follows again from symmetry of a t distribution with ν degrees of freedom about 0. We will often denote the limits of a $100 \times (1 - \alpha)\%$ confidence interval for β_k as $b_k \pm t (\alpha/2; n - p) s \{b_k\}$.

Example 3: Consider the same data. What is a 95% confidence interval for β_1 ?

lower <- b1 + s.b1*qt(alpha/2, n - 2)
upper <- b1 - s.b1*qt(alpha/2, n - 2)</pre>

We obtain a 95% confidence interval of (2.852, 4.288) for β_1 .

To conclude, we'll work through one more examples.

Example 4: Consider data from portrait studios in 21 cities run by Dwaine Studios, Inc. The studios specialize in portraits of children. Let X_1 be the number of persons aged 16 or younger in a city, let X_2 refer to per capita disposable income in a city, and let Y be the sales of portraits of children in that city from one of the 21 studies. The portrait studio is interested in testing whether or not there is a linear association between the number of persons aged 16 or younger and the sales of portraits of children having accounted for per capita disposable income, i.e. the null hypothesis H_0 : $\beta_1 = 0$ at level $\alpha = 0.05$.

```
load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/dwaine.RData")
n <- nrow(data)</pre>
X1 <- data$X1 # Extract the first predictor
X2 <- data$X2 # Extract the second predictor
Y <- data$Y # Extract the response
linmod <- lm(Y~X1+X2) # Obtain the linear regression coefficients</pre>
summary(linmod)
##
## Call:
## lm(formula = Y ~ X1 + X2)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     ЗQ
                                             Max
                                 9.4356 20.2151
## -18.4239 -6.2161
                       0.7449
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -68.8571
                           60.0170 -1.147
                                              0.2663
## X1
                 1.4546
                            0.2118
                                      6.868
                                               2e-06 ***
                                              0.0333 *
## X2
                 9.3655
                            4.0640
                                      2.305
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.01 on 18 degrees of freedom
## Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075
## F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10
```

From the printed regression results, we can see that we observe a *p*-value for a test of the null hypothesis H_0 : $\beta_1 = 0$ that is less than $\alpha = 0.05$. Accordingly, we conclude H_a : $\beta_1 \neq 0$, i.e. we conclude that there is evidence of a linear association between the number of persons aged 16 or younger and the sales of portraits of children having accounted for per capita disposable income at level $\alpha = 0.05$.