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These notes are based on Chapters 2 and 6 of KNNL.

We will continue to assume the normal error linear regression model for a dependent variable or response
Y and independent variables, predictors, or covariates X1, . . . Xp−1 is defined as:

Y = Xβ + ϵ

where:

• The elements of β =


β0
β1
...

βp−1

 are parameters

• The elements of the n × p matrix X =


1 X11 X12 . . . X1,p−1
1 X21 X22 . . . X2,p−1
...

...
... . . . ...

1 X11 X12 . . . X1,p−1

 are known constants

• ϵ =


ϵ1
ϵ2
...

ϵn

 is a random error term elements that are ϵi that are independent and normally distributed

with mean E {ϵi} = 0 and variance σ2 {ϵi} = σ2.

Under the normal error linear regression model, we have shown that the studentized statistic
bk − βk

s {bk}
∼ t (n − p) ,

where t (n − p) refers to a t distribution with n − p degrees of freedom.

This allows us to formally test a null hypothesis of the form H0: βk = c versus an alternative hypothesis of
the form Ha: βk ̸= c, for some pre-specified value c. In the previous set of notes, we did this in an informal
way for c = 0 by visually comparing bk−c

s{bk} to the density of a t distribution with n − p degrees of freedom,
and concluding that the null H0 was unlikely to be true.

To formally test this null hypothesis, we will find an interval that contains bk−c
s{bk} with probability 1 − α when

the null H0 is true, and conclude the alternative Ha if bk−c
s{bk} is outside of that interval. We will call α the

level of the test or the Type I error. The level of the test, α, describes the probability of concluding the
alternative Ha when the null H0 is true. Remember, if the null H0 is true, then bk−c

s{bk} has a t distribution with
n − p degrees of freedom. Let t (α/2; n − p) refer to the α/2 quantile of a t distribution with n − p degrees
of freedom and let t (1 − α/2; n − p) refer to the 1 − α/2 quantile of a t distribution with n − p degrees of
freedom. The interval [t (α/2; ν) , t (1 − α/2; ν)] will contain bk−c

s{bk} with probability 1 − α when the null H0 is
true.
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Note: Let t (ν) be a random variable distributed according to a t distribution with ν degrees of
freedom. The α quantile of a t distribution with ν degrees of freedom is denoted by t (α; ν), and
defined as satisfying:

P (t (ν) ≤ t (α; ν)) = α.

Under the normal errors linear regression model, the decision rule based on a the test statistic bk−c
s{bk} for a

level 1 − α test of the null hypothesis H0: βk = c versus the alternative hypothesis Ha: βk ̸= c is:

• If t (α/2; n − p) ≤ bk−c
s{bk} ≤ t (1 − α/2; n − p), conclude the null H0

• If bk−c
s{bk} < t (α/2; n − p) or bk−c

s{bk} > t (1 − α/2; n − p), conclude the alternative Ha

Note: We can think of a test of the null hypothesis H0: βk = 0 versus the alternative hypothesis
Ha: βk ̸= 0 as a test of the null hypothesis that there is no linear statistical association between
the response Y and the predictor Xk given the remaining predictors are included in the model
versus the alternative hypothesis that there is a linear association between the response Y and
the predictor Xk given the remaining predictors are included in the model.

We can make this simpler using a nice property of the t distribution.

Note: The t distribution with ν degrees of freedom is symmetrical about 0. As a result,
−t (α/2; n − p) = t (1 − α/2; n − p).

Under the normal errors linear regression model, we can alternatively say that the decision rule based on a the
test statistic bk−c

s{bk} for a level 1 − α test of the null hypothesis H0: βk = c versus the alternative hypothesis
Ha: βk ̸= c is:

• If
∣∣∣ bk−c

s{bk}

∣∣∣ ≤ t (1 − α/2; n − p), conclude the null H0

• If
∣∣∣ bk−c

s{bk}

∣∣∣ > t (1 − α/2; n − p), conclude the alternative Ha

Example 1: Again, consider data from a company that manufactures refrigeration equipment,
called the Toluca company. They produce refrigerator parts in lots of different sizes, and the
amount of time it takes to produce a lot of refrigerator parts depends on the number of parts in
the lot and several other variable factors. Let X be the number of refrigerator plots in a lot, and
let Y refer to the amount of time it takes to produce a size of lot X. Suppose a cost analyst in
the Toluca Company is interested in testing whether or not there is a linear association between
work hours and lot size, i.e. the null hypothesis H0: β1 = 0 at level α = 0.05.

load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/toluca.RData")
n <- nrow(data) # Extract number of observations
Y <- data$Y # Extract response
X <- data$X # Extract predictor
linmod <- lm(Y~X) # Fit linear model
b1 <- linmod$coef[2]
s.b1 <- summary(linmod)$coef[2, 2]
alpha <- 0.05
tquantile <- qt(1 - alpha/2, n - 2)

We obtain b1 = 3.57 and s {b1} = 0.347. Accordingly, the test statistic is b1/s {b1} = 10.29. We
compare this to the 0.975 quantile of a t distribution with 23 degrees of freedom, t (0.975; 23) =
2.069. Because the test statistic b1/s {b1} exceeds t (0.975; 23), we conclude Ha: β1 ̸= 0, i.e. we
conclude that there is evidence of a linear association between work hours and lot size at level
α = 0.05.

When we are performing a test, it can also be helpful to compute the corresponding p-value, which is the
probability of observing a test statistic that is more extreme than the observed value if the null H0 is true.
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When we are performing a level 1 − α test of the null hypothesis H0: βk = c versus the alternative hypothesis
Ha: βk ̸= c, the p-value is

P

(
t (n − p) < −

∣∣∣∣bk − c

s {bk}

∣∣∣∣ or t (n − p) >

∣∣∣∣bk − c

s {bk}

∣∣∣∣) = P

(
t (n − p) < −

∣∣∣∣bk − c

s {bk}

∣∣∣∣) + P

(
t (n − p) >

∣∣∣∣bk − c

s {bk}

∣∣∣∣)
= 2P

(
t (n − p) < −

∣∣∣∣bk − c

s {bk}

∣∣∣∣) .

The last line is a simpification that follows from the symmetry of a t distribution with ν degrees of freedom
about 0.

Example 2: Consider the same data. What is the p-value of the test of whether or not there is
a linear association between work hours and lot size, i.e. the p-value of the test of the the null
hypothesis H0: β1 = 0?

pvalue <- 2*pt(-abs(b1/s.b1), n - 2)

We obtain a p-value of 4.4488276 × 10−10.

Note: We never say that a p-value is 0. When a p-value is extremely small, we either provide
the value as we do above, write p < 10−3, or write p = 0+.

We can also conduct one-sided tests of the form H0: βk = 0 versus the alternative Ha: βk > 0 or H0:
βk = 0 versus the alternative Ha: βk < 0. These are rarely used in practice, so we will not discuss them here.

The last thing we will discuss is obtaining a 100 × (1 − α)% confidence interval for βk. Because we know that
bk−βk

s{bk} follows a t distribution with n − p degrees of freedom, the following holds for all probabilities α:

P

(
t (α/2; n − p) ≤ bk − βk

s {bk}
≤ t (α/2; n − p)

)
= 1 − α.

Let’s rearrange the terms, to see if we can get an inequality for βk.

P

(
t (α/2; n − p) ≤ bk − βk

s {bk}
≤ t (1 − α/2; n − p)

)
= P (t (α/2; n − p) s {bk} ≤ bk − βk ≤ t (1 − α/2; n − p) s {bk})

= P (t (α/2; n − p) s {bk} − bk ≤ −βk ≤ t (1 − α/2; n − p) s {bk} − bk)
= P (bk − t (1 − α/2; n − p) s {bk} ≤ βk ≤ bk − t (α/2; n − p) s {bk})
= P (bk + t (α/2; n − p) s {bk} ≤ βk ≤ bk − t (α/2; n − p) s {bk})

The last step follows again from symmetry of a t distribution with ν degrees of freedom about 0. We will
often denote the limits of a 100 × (1 − α)% confidence interval for βk as bk ± t (α/2; n − p) s {bk}.

Example 3: Consider the same data. What is a 95% confidence interval for β1?
lower <- b1 + s.b1*qt(alpha/2, n - 2)
upper <- b1 - s.b1*qt(alpha/2, n - 2)

We obtain a 95% confidence interval of (2.852, 4.288) for β1.

To conclude, we’ll work through one more examples.

Example 4: Consider data from portrait studios in 21 cities run by Dwaine Studios, Inc. The
studios specialize in portraits of children. Let X1 be the number of persons aged 16 or younger in
a city, let X2 refer to per capita disposable income in a city, and let Y be the sales of portraits
of children in that city from one of the 21 studies. The portrait studio is interested in testing
whether or not there is a linear association between the number of persons aged 16 or younger
and the sales of portraits of children having accounted for per capita disposabe income, i.e. the
null hypothesis H0: β1 = 0 at level α = 0.05.
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load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/dwaine.RData")
n <- nrow(data)
X1 <- data$X1 # Extract the first predictor
X2 <- data$X2 # Extract the second predictor
Y <- data$Y # Extract the response
linmod <- lm(Y~X1+X2) # Obtain the linear regression coefficients
summary(linmod)

##
## Call:
## lm(formula = Y ~ X1 + X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.4239 -6.2161 0.7449 9.4356 20.2151
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -68.8571 60.0170 -1.147 0.2663
## X1 1.4546 0.2118 6.868 2e-06 ***
## X2 9.3655 4.0640 2.305 0.0333 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.01 on 18 degrees of freedom
## Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075
## F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10

From the printed regression results, we can see that we observe a p-value for a test of the null
hypothesis H0: β1 = 0 that is less than α = 0.05. Accordingly, we conclude Ha: β1 ̸= 0, i.e. we
conclude that there is evidence of a linear association between the number of persons aged 16 or
younger and the sales of portraits of children having accounted for per capita disposabe income at
level α = 0.05.
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