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These notes are based on Chapters 2 and 6 of KNNL.

We will continue to assume the normal error linear regression model for a dependent variable or response
Y and independent variables, predictors, or covariates X1, . . . Xp−1 is defined as:

Y = Xβ + ϵ

where:

• The elements of β =


β0
β1
...

βp−1

 are parameters

• The elements of the n × p matrix X =


1 X11 X12 . . . X1,p−1
1 X21 X22 . . . X2,p−1
...

...
... . . . ...

1 Xn1 Xn2 . . . Xn,p−1

 are known constants

• ϵ =


ϵ1
ϵ2
...

ϵn

 is a random error term elements that are ϵi that are independent and normally distributed

with mean E {ϵi} = 0 and variance σ2 {ϵi} = σ2.

Suppose that instead, we want to talk about the distribution of our point estimate of the mean response at
when the predictors are equal to Xh1, . . . , Xh,p−1? Let Xh =

(
1 Xh1 . . . Xh,p−1

)
refer to the 1 × p

vector of predictor values. The point estimate of the mean response is Ŷh = Xhb. Using the same logic we
used to describe the sampling distribution of bk and bk−βk

s{bk} , we can describe the sampling distribution of Ŷh

and Ŷh−E{Ŷh}
s{Ŷh} .

Under the normal errors regression model, Ŷh is a normal random variable with mean E
{

Ŷh

}
= Xhβ and

variance σ2
{

Ŷh

}
= σ2Xh

(
X ′X

)−1
X ′

h.

Under the normal errors regression model,

Ŷh − E
{

Ŷh

}
s

{
Ŷh

} .

is t distributed with n − p degrees of freedom.
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This allows us to construct (1 − α) × 100% confidence intervals for the mean response for any value of the
predictor variables. The limits of a (1 − α)×100% confidence interval for E

{
Ŷh

}
are Ŷh±t (α/2; n − p) s

{
Ŷh

}
.

Example 1: Again, consider data from a company that manufactures refrigeration equipment,
called the Toluca company. They produce refrigerator parts in lots of different sizes, and the
amount of time it takes to produce a lot of refrigerator parts depends on the number of parts in
the lot and several other variable factors. Let X be the number of refrigerator plots in a lot, and
let Y refer to the amount of time it takes to produce a size of lot X. Suppose a cost analyst in
the Toluca Company is interested finding a 90% confidence interval for E {Yh} when the lot size
Xh = 65 units.

load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/toluca.RData")
n <- nrow(data) # Extract number of observations
Y <- data$Y # Extract response
X <- data$X # Extract predictor
linmod <- lm(Y~X) # Fit linear model
pred <- predict(linmod, newdata = data.frame("X" = 65),

se.fit = TRUE)
Y.hat.h <- pred$fit
s.Y.hat.h <- pred$se.fit
alpha <- 0.1
lower <- Y.hat.h + qt(alpha/2, n - 2)*s.Y.hat.h
upper <- Y.hat.h - qt(alpha/2, n - 2)*s.Y.hat.h

We obtain a 90% confidence interval of (277.432, 311.426) for E
{

Ŷh

}
.

Now, suppose that we want to want to talk about of a new observation Yh(new) when the predictors are equal
to Xh1, . . . , Xh,p−1. Again, let Xh =

(
1 Xh1 . . . Xh,p−1

)
refer to the 1 × p vector of predictor values.

If we knew β and σ2, this would be simple! The distribution of a new observation Yh(new) would be normal,
with mean E

{
Yh(new)

}
= Xhβ and variance σ2 {

Yh(new)
}

= σ2. In practice, we don’t know β or σ2.

To address this, we consider the distribution of Yh(new) − Ŷh, our new observation minus the estimated mean
Ŷh = Xhb. Because Yh(new) is a normal random variable and Ŷh is a linear combination of normal random
variables, Yh(new) − Ŷh is also normal with mean

E
{

Yh(new) − Ŷh

}
= E

{
Yh(new)

}
− E

{
Ŷh

}
= Xhβ − Xhβ

= 0

and variance

σ2
{

Yh(new) − Ŷh

}
= σ2 {

Yh(new)
}

− 2σ
{

Yh(new), Ŷh

}
+ σ2

{
Ŷh

}
= σ2 − 2σ

{
Yh(new), Ŷh

}
+ σ2Xh

(
X ′X

)−1
Xh

= σ2 + σ2Xh

(
X ′X

)−1
Xh

= σ2
(

1 + Xh

(
X ′X

)−1
Xh

)
.

Note that the variance of Yh(new) − Ŷh has two distinct components:

• The variability of a new observation Yh(new) if the mean E
{

Yh(new)
}

were known
• The variability of our estimate Ŷh of the mean E

{
Yh(new)

}
The corresponding unbiased estimator of σ2

{
Yh(new) − Ŷh

}
is, s2

{
Yh(new) − Ŷh

}
= s2

(
1 + Xh

(
X ′X

)−1
Xh

)
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which is obtained by plugging s2 in for σ2. We will refer to σ2
{

Yh(new) − Ŷh

}
and s2

{
Yh(new) − Ŷh

}
as

σ2 {pred} and s2 {pred}, respectively.

It follows that the studentized statistic Yh(new)−Ŷh

s{pred} ∼ tn−2 under the normal error linear regression model.
By the same logic we have used to obtain (1 − α) × 100% confidence intervals for b and Ŷh, we can obtain
a (1 − α) × 100% prediction interval for Yh(new). The limits of a (1 − α) × 100% prediction interval for
Ŷh(new) are Ŷh ± t (α/2; n − p) s {pred}. It is called a prediction interval because it will contain a single
future value Yh(new) with probability (1 − α) × 100% under the normal error linear regression model.

Example 2: Again, consider data from a company that manufactures refrigeration equipment,
called the Toluca company. Suppose a cost analyst in the Toluca Company is interested finding a
90% prediction interval for E {Yh} when the lot size Xh = 100 units.

pred <- predict(linmod, newdata = data.frame("X" = 100),
se.fit = TRUE)

Y.hat.h <- pred$fit
s <- pred$residual.scale
s.pred <- sqrt(pred$se.fitˆ2 + sˆ2)
alpha <- 0.1
lower <- Y.hat.h + qt(alpha/2, n - 2)*s.pred
upper <- Y.hat.h - qt(alpha/2, n - 2)*s.pred

We obtain a 90% confidence interval of (332.207, 506.565) for Ŷh(new).

Confidence and prediction intervals can be computed for many predictor values simultaneously. This allows us
to construct very useful visualizations of model fit by plotting the fitted regression line with 1 − α confidence
and prediction intervals at each possible predictor value.

Example 3: Again, consider data from a company that manufactures refrigeration equipment,
called the Toluca company. Suppose a cost analyst wants to visualize the confidence intervals and
prediction intervals for a range of possible lot sizes.

plot(X, Y, pch = 16, xlab = "Lot Size",
ylab = "Work Hours")

Xvals <- seq(10, 130, length.out = 1000)
conf <- predict(linmod, newdata = data.frame("X" = Xvals),

interval = "confidence", level = 1 - alpha)
pred <- predict(linmod, newdata = data.frame("X" = Xvals),

interval = "prediction", level = 1 - alpha)
fitted <- conf[, "fit"]
lower.conf <- conf[, "lwr"]
upper.conf <- conf[, "upr"]
lower.pred <- pred[, "lwr"]
upper.pred <- pred[, "upr"]
lines(Xvals, fitted)
polygon(c(Xvals, rev(Xvals)),

c(lower.conf, rev(upper.conf)),
col = rgb(0, 0, 1, 0.25),
border = NA)

polygon(c(Xvals, rev(Xvals)),
c(lower.pred, rev(upper.pred)),
col = rgb(1, 0, 0, 0.25),
border = NA)

legend("topleft", fill = c(rgb(0, 0, 1, 0.25),
rgb(1, 0, 0, 0.25)),

legend = c("90% Confidence", "90% Prediction"),
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title = "Interval Type", border = NA)
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Figure 1: Example 3
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