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These notes are based on Chapters 2 and 6 of KNNL.

We will continue to assume the normal error linear regression model for a dependent variable or response
Y and independent variables, predictors, or covariates X1, . . . Xp−1 is defined as:

Y = Xβ + ϵ

where:

• The elements of β =


β0
β1
...

βp−1

 are parameters

• The elements of the n × p matrix X =


1 X11 X12 . . . X1,p−1
1 X21 X22 . . . X2,p−1
...

...
... . . . ...

1 Xn1 Xn2 . . . Xn,p−1

 are known constants

• ϵ =


ϵ1
ϵ2
...

ϵn

 is a random error term elements that are ϵi that are independent and normally distributed

with mean E {ϵi} = 0 and variance σ2 {ϵi} = σ2.

In practice, we may sometimes want to test the null hypothesis that there is no linear association between
the response and the predictors H0: β1 = · · · = βp−1 = 0. When we have a single predictor (p = 2), this is
the same as tests we have discussed previously, because it is a test of a single parameter β1. Accordingly, we
can compute the studentized statistic b1/s {b1} and compare it to quantiles of a t distribution with n − 2
degrees of freedom. However when we have more than one predictor (p > 2), this is a type of test that we
have not discussed yet because it is a test of multiple parameters β1, . . . , βp−1 simultaneously.

To address this, we will utilize sums of squares:

• The total sum of squares SSTO =
∑n

i=1
(
Yi − Ȳ

)2, which describes the total variability of the
response

• The error sum of squares SSE =
∑n

i=1

(
Yi − Ŷi

)2
, which describes the remaining/residual variability

of the response having accounted for the predictors

Note: The difference between the total sum of squares and the error sum of squares is defined as
the regression sum of squares, SSR = SSTO − SSE. The regression sum of squares SSR is
describes the total variability of the fitted values SSR =

∑n
i=1

(
Ŷi − Ȳ

)2
.
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The sums of squares SSTO, SSE, and SSR are random variables with n − 1, n − p, and p − 1 degrees of
freedom. We define the corresponding mean squares to be the sums of squares divided by their degrees of
freedom, specifically MSTO = SST O

n−1 , MSE = SSE
n−p , and MSR = SSR

p−1 .

Note: The difference between the total mean squares and the mean squared error is not the
regression mean squares squares, MSR ̸= MSTO − MSE.

A test of the null hypothesis that there is no linear association between the response and the predictors H0:
β1 = · · · = βp−1 = 0 can be obtained from the F -statistic

MSR

MSE
.

First, let’s examine the numerator and the denomenator to get some intuition. What are their expectations
under the normal error regression model?

We have already found E {MSE}! Note that MSE = s2, our unbiased estimator of the noise variance σ2.
We have already shown that E {MSE} = σ2.

What about E {MSR}? That’s going to be trickier, and we’re going to need to do a lot of algebra to figure
it out.
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E {MSR} = E


∑n

i=1

(
Ŷi − Ȳ

)2

p − 1


= 1

p − 1E

{
Y ′
(

H − 1
n

11′
)(

H − 1
n

11′
)

Y

}
= 1

p − 1E

{
Y ′
(

H − 1
n

1n1′
n

)
Y

}
= 1

p − 1E

{
(Xβ + ϵ)′

(
H − 1

n
1n1′

n

)
(Xβ + ϵ)

}
= 1

p − 1E

{(
β′X ′ + ϵ′)(H − 1

n
1n1′

n

)
(Xβ + ϵ)

}
= 1

p − 1E

{
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + ϵ′

(
H − 1

n
1n1′

n

)
Xβ + β′X ′

(
H − 1

n
1n1′

n

)
ϵ + ϵ′

(
H − 1

n
1n1′

n

)
ϵ

}
= 1

p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + 2E

{
β′X ′

(
H − 1

n
1n1′

n

)
ϵ

}
+ E

{
ϵ′
(

H − 1
n

1n1′
n

)
ϵ

})
= 1

p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + 2β′X ′

(
H − 1

n
1n1′

n

)
E {ϵ} + E

{
tr
(

ϵ′
(

H − 1
n

1n1′
n

)
ϵ

)})
= 1

p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + E

{
tr
(

ϵ′
(

H − 1
n

1n1′
n

)
ϵ

)})
= 1

p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + E

{
tr
((

H − 1
n

1n1′
n

)
ϵϵ′
)})

= 1
p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + tr

((
H − 1

n
1n1′

n

)
E {ϵϵ′}

))
= 1

p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + tr

((
H − 1

n
1n1′

n

)
σ2In

))
= 1

p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + σ2tr

(
H − 1

n
1n1′

n

))
= 1

p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + σ2

(
tr (H) − tr

(
1
n

1n1′
n

)))
= 1

p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + σ2

(
tr
(

X
(
X ′X

)−1
X ′
)

− 1
n

tr (1′
n1n)

))
= 1

p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + σ2

(
tr
((

X ′X
)−1

X ′X
)

− 1
))

= 1
p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ + σ2 (p − 1)

)
= 1

p − 1

(
β′X ′

(
H − 1

n
1n1′

n

)
Xβ

)
+ σ2

= 1
p − 1

(
p−1∑
k=0

p−1∑
l=0

βkβlAij

)
+ σ2 A = X ′

(
H − 1

n
1n1′

n

)
X

= σ2 + 1
p − 1

p−1∑
k=1

p−1∑
l=1

βkβl

(
n∑

i=1

(
Xik − X̄k

) (
Xi,l − X̄l

))
.
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If we want to work out why the last step holds, we need to examine A more carefully:

A =
(

X ′HX − 1
n

X1n1′
nX

)
=
(

X ′X − 1
n

X1n1′
nX

)

=




n
∑n

i=1 Xi1 . . .
∑n

i=1 Xi,p−1∑n
i=1 Xi1

∑n
i=1 X2

i1 . . .
∑n

i=1 Xi1Xi,p−1
...

... . . . ...∑n
i=1 Xi,p−1

∑n
i=1 Xi1Xi,p−1 . . .

∑n
i=1 X2

i,p−1

−

1
n


n∑n

i=1 Xi1
...∑n

i=1 Xi,p−1

( n
∑n

i=1 Xi1 . . .
∑n

i=1 Xi,p−1
)


=




n
∑n

i=1 Xi1 . . .
∑n

i=1 Xi,p−1∑n
i=1 Xi1

∑n
i=1 X2

i1 . . .
∑n

i=1 Xi1Xi,p−1
...

... . . . ...∑n
i=1 Xi,p−1

∑n
i=1 Xi1Xi,p−1 . . .

∑n
i=1 X2

i,p−1

−


n

∑n
i=1 Xi1 . . .

∑n
i=1 Xi,p−1∑n

i=1 Xi1
1
n (
∑n

i=1 Xi1)2
. . . 1

n (
∑n

i=1 Xi1) (
∑n

i=1 Xi,p−1)
...

... . . . ...∑n
i=1 Xi,p−1

1
n (
∑n

i=1 Xi1) (
∑n

i=1 Xi,p−1) . . . 1
n (
∑n

i=1 Xi,p−1)2




=


0 0 . . . 0
0

(∑n
i=1 X2

i1
)

− X̄2
1 . . . (

∑n
i=1 Xi1Xi,p−1) − X̄1X̄p−1

...
... . . . ...

0 (
∑n

i=1 Xi1Xi,p−1) − X̄1X̄p−1 . . .
(∑n

i=1 X2
i,p−1

)
− X̄2

p−1



=


0 0 . . . 0
0

∑n
i=1
(
Xi1 − X̄1

)2
. . .

∑n
i=1
(
Xi1 − X̄1

) (
Xi,p−1 − X̄p−1

)
...

... . . . ...
0
∑n

i=1
(
Xi1 − X̄1

) (
Xi,p−1 − X̄p−1

)
. . .

∑n
i=1
(
Xi,p−1 − X̄p−1

)2


Now let’s examine E {MSR} = σ2 + 1

p−1
∑p−1

k=1
∑p−1

l=1 βkβl

(∑n
i=1
(
Xik − X̄k

) (
Xi,l − X̄l

))
. It is:

• Equal to E {MSE} under H0 : β1 = β2 = · · · = βp−1 = 0!
• Greater than E {MSE} under Ha : βk ̸= 0 for at least one value of k > 0! We’re not going to delve

into exacty why this is true especially if more than one β1, . . . , βp−1 is greater than 0, but trust me
that it is true!

This suggests that the ratio MSR
MSE is a good test statistic for testing H0 : β1 = β2 = · · · = βp−1 = 0; we expect

it to be close to 1 when H0 is true and greater than 1 otherwise.

To actually obtain a formal test of H0 : β1 = β2 = · · · = βp−1 = 0 that uses MSR
MSE , we need to determine it’s

distribution.

Under the null H0: β1 = · · · = βp−1 = 0, the F -statistic has an F distribution with p − 1 and n − p degrees
of freedom, denoted by the F (p − 1, n − p) distribution.

Note: Let v1 and v2 be independent χ2 (ν1) and χ2 (ν2) random variables. We define an F

random variable as
v1
ν1
v2
ν2

.
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We can get some intuition for why MSR
MSE ∼ Fp−1,n−p by recalling the definition of a χ2 (ν) random variable

and rewriting

MRS

MSE
=

MSR
σ2

MSE
σ2

=

∑n

i=1

(
Ŷi−Ȳ

σ

)2

p−1∑n

i=1

(
Yi−Ŷi

σ

)2

n−p

.

Although we’re not going to delve into exactly why, the quantities
∑n

i=1

(
Ŷi−Ȳ

σ

)2
and

∑n
i=1

(
Yi−Ŷi

σ

)2
are

independent, the quantity
∑n

i=1

(
Ŷi−Ȳ

σ

)2
is equivalent to a sum of p − 1 squared standard normal random

variables, and the quantity
∑n

i=1

(
Yi−Ŷi

σ

)2
is equivalent to a sum of n − p squared standard normal random

variables. Thus, the ratio MRS
MSE can be expressed as the ratio of two χ2 random variables divided by their

degrees of freedom.

Now we can construct a decision rule for a test, keeping in mind that it makes sense to conclude Ha when
the ratio MSR

MSE is larger than we would expect to observe under the null.

Note: Let F (ν1, ν2) be a random variable distributed according to a F distribution with ν1 and
ν2 degrees of freedom. The α quantile of an F distribution with ν1 and ν2 degrees of freedom is
denoted by F (α; ν1, ν2), and defined as satisfying:

P (F (ν1, ν2) ≤ F (α; ν1, ν2)) = α.

Under the normal errors linear regression model, the decision rule based on a the test statistic MSR
MSE for a

level 1 − α test of the null hypothesis H0: β1 = β2 = · · · = βp−1 = 0 versus the alternative hypothesis Ha:
βk ̸= 0 for some k > 0 is:

• If MSR
MSE ≤ F (1 − α; p − 1, n − p), conclude the null H0

• If MSR
MSE > F (1 − α; p − 1, n − p), conclude the alternative Ha

Note: We can think of a test of the null hypothesis H0: β1 = β2 = · · · = βp−1 = 0 versus the
alternative hypothesis Ha: βk ̸= 0 for at least one k > 0 as a test of the null hypothesis that there
is a linear statistical association between the response Y and all of the predictors X1, . . . , Xp−1
versus the alternative hypothesis that there is a linear association between the response Y and at
least one predictor Xk with k > 0.

Example 1: Again, consider data from a company that manufactures refrigeration equipment,
called the Toluca company. They produce refrigerator parts in lots of different sizes, and the
amount of time it takes to produce a lot of refrigerator parts depends on the number of parts in
the lot and several other variable factors. Let X be the number of refrigerator plots in a lot, and
let Y refer to the amount of time it takes to produce a size of lot X. Suppose a cost analyst in
the Toluca Company is interested in testing whether or not there is a linear association between
work hours and lot size, i.e. the null hypothesis H0: β1 = 0 at level α = 0.05 using the ratio MSR

MSE .
load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/toluca.RData")
n <- nrow(data) # Extract number of observations
Y <- data$Y # Extract response
X <- data$X # Extract predictor
linmod <- lm(Y~X) # Fit linear model
Y.hat <- linmod$fitted.values # Obtain fitted values
# Compute sums of squares
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SSR <- sum((Y.hat - mean(Y))ˆ2)
SSE <- sum((Y - Y.hat)ˆ2)
# Compute mean squares
MSR <- SSR/1
MSE <- SSE/(n - 2)

F.statistic <- MSR/MSE

alpha <- 0.05
fquantile <- qf(1 - alpha, 1, n - 2)

We obtain a test statistic is MSR
MSE = 105.876. We compare this to the 0.95 quantile of an F

distribution with 1 and 23 degrees of freedom, F (0.95; 1, 23) = 4.279. Because the test statistic
exceeds F (0.95; 1, 23), we conclude Ha: β1 ≠ 0, i.e. we conclude that there is evidence of a linear
association between work hours and lot size at level α = 0.05.

When we are performing a test, it can also be helpful to compute the corresponding p-value, which is the
probability of observing a test statistic that is more extreme than the observed value if the null H0 is true.
When we are performing a level 1 − α test of the null hypothesis H0:β1 = β2 = · · · = βp=1 = 0, the p-value is

P

(
F (p − 1, n − p) >

MSR

MSE

)
.

Example 2: Consider the same data. What is the p-value of the test of whether or not there is
a linear association between work hours and lot size, i.e. the p-value of the test of the the null
hypothesis H0: β1 = 0 based on the test statistic MSR

MSE ?
pvalue <- 1 - pf(F.statistic, 1, n - 2)

We obtain a p-value of 4.448828 × 10−10.

To conclude, we’ll work through one more example.

Example 3: Consider data from portrait studios in 21 cities run by Dwaine Studios, Inc. The
studios specialize in portraits of children. Let X1 be the number of persons aged 16 or younger in
a city, let X2 refer to per capita disposable income in a city, and let Y be the sales of portraits
of children in that city from one of the 21 studies. The portrait studio is interested in testing
whether or not there is a linear association between the number of persons aged 16 or younger
and per capita disposable income and the sales of portraits of children having accounted for per
capita disposabe income, i.e. the null hypothesis H0: β1 = β2 = 0 at level α = 0.05.

load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/dwaine.RData")
n <- nrow(data)
X1 <- data$X1 # Extract the first predictor
X2 <- data$X2 # Extract the second predictor
Y <- data$Y # Extract the response
linmod <- lm(Y~X1+X2) # Obtain the linear regression coefficients
summary(linmod)

##
## Call:
## lm(formula = Y ~ X1 + X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.4239 -6.2161 0.7449 9.4356 20.2151
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -68.8571 60.0170 -1.147 0.2663
## X1 1.4546 0.2118 6.868 2e-06 ***
## X2 9.3655 4.0640 2.305 0.0333 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.01 on 18 degrees of freedom
## Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075
## F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10

From the printed regression results, we can see that we observe a p-value for a test of the null
hypothesis H0: β1 = β2 = 0 that is less than α = 0.05. Accordingly, we conclude Ha: β1 ̸= 0
or β2 ≠ 0, i.e. we conclude that there is evidence of a linear association between the number of
persons aged 16 or younger and per capita disposable income and the sales of portraits of children
having accounted for per capita disposabe income at level α = 0.05.
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