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These notes are based on Chapters 1 and 6 of KNNL.

Recall from the previous notes, the linear regression model for a dependent variable or response Y and
independent variables, predictors, or covariates X1, . . . Xp−1 is defined as:

Yi = β0 + β1Xi1 + β2Xi2 + · · · + βp−1Xi,p−1 + ϵi

where:

• β0, β1, . . . , βp−1 are parameters
• Xi1, . . . , Xi,p−1 are known constants
• ϵi is a random error term with mean E {ϵi} = 0 and variance σ2 {ϵi} = σ2; ϵi and ϵj are uncorrelated

so that their covariance is zero (i.e., σ {ϵi, ϵj} = 0 for all i, j; i ̸= j)
• i = 1, . . . , n

Remember, we don’t observe β0, β1, . . . , βp−1 in the real world. Instead, we estimate them by finding
the values b0, b1, . . . , bp−1 that minimize the sum of squared deviations of the response values Yi from the
regression function β0 +

∑p−1
k=1 βkXik with respect to β0, β1, . . . , βp−1. We call the sum of squared deviation

the sum of squares, and denote it by Q:

Q =
n∑

i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2

.

We minimize the Q by taking derivatives of Q with respect to β0, β1, . . . , βp−1 and finding the values of
b0, b1, . . . , bp−1 that set the derivatives equal to zero when substituted in for β0, β1, . . . , βp−1 in the derivatives.

Before we start taking derivatives, let’s expand out Q to be a nicer function of β0, β1, . . . , βp−1.

Q =
n∑

i=1
Y 2

i − 2Yi

(
β0 +

p−1∑
k=1

βkXik

)
+
(

β0 +
p−1∑
k=1

βkXik

)2

=
n∑

i=1
Y 2

i − 2Yi

(
β0 +

p−1∑
k=1

βkXik

)
+ β2

0 +
(

p−1∑
k=1

β2
kX2

ik

)
+ 2

(
p−1∑
k=1

β0βkXik

)
+

p−1∑
k=1

p−1∑
l=1,l ̸=k

βkβlXikXil


• ∂Q

∂β0
=
∑n

i=1 −2Yi + 2β0 + 2
(∑p−1

k=1 βkXik

)
• For k > 0, ∂Q

∂βk
=
∑n

i=1 −2YiXik + 2βkX2
ik + 2β0Xik + 2

∑p−1
l=1,l ̸=k βlXilXik

We call this set of p equations, which set each derivative of Q equal to 0, the normal equations. Finding
the values b0, b1, . . . , bp−1 of β0, β1, . . . , βp−1 that set these derivatives equal to zero doesn’t look easy. Each
equation depends on all of the regression coefficients, not just one. This is why we’re going to need linear
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algebra if we want to be able to write out a closed form solutions for b0, b1, . . . , bp−1 in terms of the data
when we have more than one predictor and p > 2.

Fortunately, R and most statistical software packages have a function that can solve for b0, b1, . . . , bp−1 for us!
In R, the function that finds the values b0, b1, . . . , bp−1 that minimizes the sum of squared errors Q is called
lm. Examples of using lm are provided below.

Example 1: Consider data from a company that manufactures refrigeration equipment, called
the Toluca company. They produce refrigerator parts in lots of different sizes, and the amount of
time it takes to produce a lot of refrigerator parts depends on the number of parts in the lot and
several other variable factors. Let X be the number of refrigerator plots in a lot, and let Y refer
to the amount of time it takes to produce a size of lot X.

load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/toluca.RData")
X <- data$X # Extract the X values
Y <- data$Y # Extract the Y values
linmod <- lm(Y~X) # Obtain the linear regression coefficients
b0 <- linmod$coef[1]
b1 <- linmod$coef[2]
plot(X, Y, xlab = "Lot Size",

ylab = "Hours",pch = 16) # Plot values of Y against values of X with axis labels
abline(a = b0, b = b1, col = "blue") # Add estimated regression function to plot
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Figure 1: Example 1

We obtain an intercept estimate of b0 = 62.366 and b1 = 3.57.

We can intepret b0 as the estimated mean number of hours it takes to produce a lot made up of 0
parts. This doesn’t make much sense for this dataset or problem, because we did not observe lots
of 0 parts.

We can intepret b1 as indicating that a one unit increase in lot size in is associated with a 3.57
hour increase in time needed to produce the lot.

The data and estimated regression function are shown in Figure 1. Black, filled-in dots represent
the observed lot sizes and corresponding hours needed, and the solid blue line represents the
estimated regression function.
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Example 2: Consider data on age (X) and plasma level of a polyamine (Y ) for 25 healthy
children.

load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/plasma.RData")
X <- data$X # Extract the X values
Y <- data$Y # Extract the Y values
linmod <- lm(Y~X) # Obtain the linear regression coefficients
b0 <- linmod$coef[1]
b1 <- linmod$coef[2]
plot(X, Y, xlab = "Age (years)",

ylab = "Plasma Level", pch = 16)
abline(a = b0, b = b1, col = "blue") # Add estimated regression function to plot
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Figure 2: Example 2

We obtain an intercept estimate of b0 = 13.475 and b1 = −2.182.

We can intepret b0 as the estimated mean plasma level for a 0 year old child. This does make
sense for this dataset and problem, because we do observe the plasma levels of children at age 0.

We can intepret b1 as indicating that a one unit increase in age is associated with a −2.182
decrease in plasma level.

The data and estimated regression function are shown in Figure 2. Black, filled-in dots represent
the observed ages and plasma level, and the solid blue line represents the estimated regression
function.
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Example 3: Consider data from portrait studios in 21 cities run by Dwaine Studios, Inc. The
studios specialize in portraits of children. Let X1 be the number of persons aged 16 or younger in
a city, let X2 refer to per capita disposable income in a city, and let Y be the sales of portraits of
children in that city from one of the 21 studies.

load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/dwaine.RData")
X1 <- data$X1 # Extract the first predictor
X2 <- data$X2 # Extract the second predictor
Y <- data$Y # Extract the response
linmod <- lm(Y~X1+X2) # Obtain the linear regression coefficients
b0 <- linmod$coef[1]
b1 <- linmod$coef[2]
b2 <- linmod$coef[3]

We obtain a estimates b0 = −68.857, b1 = 1.455, and b2 = 9.366.

We can intepret b0 as the estimated mean photo sales in a city with 0 persons aged 16 or younger
and 0 per capita disposable income. This does make sense for this dataset and problem, because
we do observe the plasma levels of children at age 0.

We can intepret b1 as indicating that a additional person under 16 is associated with a 1.455
increase in sales of portraits of children, holding per capita disposable income constant.

We can intepret b2 as indicating that one additional unit of per capita disposable income is
associated with a 9.366 increase in sales of portraits of children, holding the number of persons
under 16 constant.
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We refer to b0, b1, . . . , bp−1 as the estimated regression coefficients. Sometimes we will state that they are
point estimates of β0, β1, . . . , βp−1. The term point estimate is a general way of referring to an estimate
of an unknown quantity.

Having obtained the estimated regression coefficients b0, b1, . . . , bp−1, we can write down the corresponding
estimated regression function or estimated mean response is

Ŷ = b0 +
p−1∑
k=1

bkXk,

where Ŷ (pronounced Y hat) is the value of the estimated regression function at level X1, . . . , Xp−1 of the
predictors.

Now let’s talk about solving for b0 and b1 in closed form. We will rarely need to do this in practice, but
learning the closed form solutions is crucial for understanding properties of b0 and b1 and building intuition.
When we have just one predictor, we can solve for b0 and b1 in closed form. We’ll focus on that for now.
When we have one predictor and p = 2, the sum of squares Q simplifies to:

Q =
n∑

i=1
Y 2

i − 2Yi (β0 + β1Xi) + β2
0 + β2

1X2
i + 2β0β1Xi.

There are just two derivatives to consider, which simplify to:

• ∂Q
∂β0

=
∑n

i=1 −2Yi + 2β0 + 2β1Xi

• ∂Q
∂β1

=
∑n

i=1 −2YiXi + 2β1X2
i + 2β0Xi

The corresponding normal equations are:

•
∑n

i=1 −2Yi + 2b0 + 2b1Xi = 0
•
∑n

i=1 −2YiXi + 2b1X2
i + 2b0Xi = 0

Let’s rearrange them, starting with the first one:
n∑

i=1
−2Yi + 2b0 + 2b1Xi = 0 =⇒ nb0 =

n∑
i=1

−Yi − b1Xi1

b0 = 1
n

n∑
i=1

Yi − b1Xi

b0 = Ȳ − b1X̄.

This tells us that if we know b1, we can determine b0. What about the second equation?

n∑
i=1

−2Yib1Xi + 2b1X2
i + 2b0b1Xi = 0 =⇒ b1

n∑
i=1

X2
i =

n∑
i=1

YiXi − b0Xi

b1 =
∑n

i=1 Xi (Yi − b0)∑n
i=1 X2

i

.

This tells us that if we know b0, we can determine b1. What if we don’t know either? Let’s plug our expression
for b0 into the equation b1

∑n
i=1 X2

i =
∑n

i=1 YiXi − b0Xi. We get:

b1

n∑
i=1

X2
i =

n∑
i=1

YiXi −
(
Ȳ − b1X̄

)
Xi =⇒ b1

(
n∑

i=1
Xi

(
Xi − X̄

))
=

n∑
i=1

Xi

(
Yi − Ȳ

)
b1 =

∑n
i=1 Xi

(
Yi − Ȳ

)∑n
i=1 Xi

(
Xi − X̄

)
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Aha! We can compute the least squares estimate b1 of β1 from the data! Then we can plug our least squares
estimate b1 into the equation b0 = Ȳ − b1X̄ to obtain the least squares estimate b0 of β0.

Example 4: Let’s revisit the data from Problem 3 of Homework 1, where we have he regular
season three point shooting percentages of Jaylen Brown, Al Horford, Marcus Smart, Jayson
Tatum, Payton Pritchard, Grant Williams, Sam Hauser, and Derrick White during the 2021-2022
season (X) and 2022-2023 season (Y ). What are the least squares estimates of b0 and b1?

x <- c(35.8, 33.6, 33.1, 35.3, 41.2, 41.1, 43.2, 30.6)
y <- c(33.4, 41.7, 33.3, 35.5, 33.0, 41.4, 39.7, 37.7)

x.bar <- mean(x)
y.bar <- mean(y)

b1 <- sum(x*(y - y.bar))/sum(x*(x - x.bar))
b0 <- y.bar - b1*x.bar

We obtain an intercept estimate of b0 = 32.194 and b1 = 0.13.

We can intepret b0 as the estimated mean three point shooting percentage in 2022-2023 of a Celtics
player who had a shooting percentage of 0 in 2021-2022. This doesn’t make much sense for this
dataset or problem, because we did not observe any 2021-2022 three point shooting percentages
close to 0 and it is implausible that a player would have a three point shooting percentage of 0 in
any season.

We can intepret b1 as indicating that a one percent increase in 2021-2022 three point shooting
percentage is associated with a 0.13 percent increase in 2022-2023 three point shooting percentages.

The data and estimated regression function are shown in Figure 4. Blue, filled-in dots represent
the observed three point shooting percentages, a red filled-in dot represents the average data
point (X̄, Ȳ ), the dashed line represents a 45◦ line, and the solid line represents the estimated
regression function.

plot(x, y, xlab = "2021-2022 3PT",
ylab = "2022-2023 3PT",
ylim = c(20, 50),
xlim = c(20, 50), pch = 16, col = "blue")

abline(a = 0, b = 1, lty = 3)
points(x.bar, y.bar, pch = 16, col = "red")
curve(b0 + b1*x, from = 10, to = 50, add = TRUE)
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Figure 3: Example 4
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Note: In practice, it is more common to see the equation

b1 =
∑n

i=1
(
Yi − Ȳ

) (
Xi − X̄

)∑n
i=1
(
Xi − X̄

)2 .

This gives the same result, because
∑n

i=1
(
Yi − Ȳ

) (
Xi − X̄

)
=

∑n
i=1 Xi

(
Yi − Ȳ

)
and∑n

i=1
(
Xi − X̄

)2 =
∑n

i=1 Xi

(
Xi − X̄

)
. Showing this is annoying, but a rite of passage. We’ll do

so below.
n∑

i=1

(
Xi − X̄

) (
Yi − Ȳ

)
=

n∑
i=1

XiYi − X̄Yi − Ȳ Xi + X̄Ȳ

= nX̄Ȳ − Ȳ

n∑
i=1

Xi − X̄

n∑
i=1

Yi +
n∑

i=1
XiYi

= nX̄Ȳ − 2nX̄Ȳ +
n∑

i=1
XiYi

= −nX̄Ȳ +
n∑

i=1
XiYi

= −Ȳ

n∑
i=1

Xi +
n∑

i=1
XiYi

=
n∑

i=1
Xi

(
Yi − Ȳ

)
n∑

i=1

(
Xi − X̄

)2 =
n∑

i=1
X2

i − 2X̄Xi + X̄2

= nX̄2 − 2X̄

n∑
i=1

Xi +
n∑

i=1
X2

i

= nX̄2 − 2nX̄2 +
n∑

i=1
X2

i

= −nX̄2 +
n∑

i=1
X2

i

= −X̄

n∑
i=1

Xi +
n∑

i=1
X2

i

=
n∑

i=1
Xi

(
Xi − X̄

)
Ta-da!
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