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These notes are based on Chapters 1, 5, and 6 of KNNL.

Recall from the previous notes, the linear regression model for a dependent variable or response Y and
independent variables, predictors, or covariates X1, . . . Xp−1 is defined as:

Yi = β0 + β1Xi1 + β2Xi2 + · · · + βp−1Xi,p−1 + ϵi

where:

• β0, β1, . . . , βp−1 are parameters
• Xi1, . . . , Xi,p−1 are known constants
• ϵi is a random error term with mean E {ϵi} = 0 and variance σ2 {ϵi} = σ2; ϵi and ϵj are uncorrelated

so that their covariance is zero (i.e., σ {ϵi, ϵj} = 0 for all i, j; i ̸= j)
• i = 1, . . . , n

Remember, we don’t observe β0, β1, . . . , βp−1 in the real world. Instead, we estimate them by finding
the values b0, b1, . . . , bp−1 that minimize the sum of squared deviations of the response values Yi from the
regression function β0 +

∑p−1
k=1 βkXik with respect to β0, β1, . . . , βp−1.

In the previous set of notes, we showed how the lm function in R can be used to compute b0, b1, . . . , bp−1. We
also showed how closed form equations can be derived for b0 and b1 when p = 2. What about when we have
multiple predictors? We want to find the values b0, b1, . . . , bp−1 that solve all p of the normal equations:

•
∑n

i=1 −2Yi + 2b0 + 2
(∑p−1

k=1 bkXik

)
= 0

• For k > 0,
∑n

i=1 −2YiXik + 2bkX2
ik + 2b0Xik + 2

∑p−1
l=1,l ̸=k blXilXik = 0

First, let’s rewrite the equations a bit, getting rid of the extra twos and starting with the terms involving
elements of b and/or X:

•
∑n

i=1 b0 +
∑p−1

k=1 bkXik − Yi = 0
• For k > 0,

∑n
i=1 bkX2

ik + b0Xik +
∑p−1

l=1,l ̸=k blXilXik − 2YiXik = 0

For this, we’ll need linear algebra. Linear algebra lets us write out sums and sets of equations efficiently. We
will define:

• The n × 1 column vector Y =


Y1
Y2
...

Yn



• The n × p design matrix X =


1 X11 X12 . . . X1,p−1
1 X21 X22 . . . X2,p−1
...

...
... . . . ...

1 Xn1 Xn2 . . . Xn,p−1
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• The p × 1 vector b =


b0
b1
...

bp−1


Note: Matrix multiplication gives us a nice way of computing several sums at once. If A is an
r × c matrix and B is a c × s matrix, the product D = AB is an r × s matrix with elements:

dij =
c∑

k=1
aikbkj .

This looks a bit familiar, and suggests that we can write out our normal equations using matrix multiplication.
The normal equations involve sums

∑n
i=1 YiXik for different values of k, as well as sums

∑n
i=1 bkX2

ik, and∑n
i=1

∑p−1
l=1,l ̸=k blXilXik. The first term resembles what we would expect to obtain if we multiplied X and

Y , however their dimensions are not amenable to matrix multiplication as-is.

Note: The transpose of a vector or matrix is obtained by interchanging the rows
and columns. * The transpose of the n × 1 column vector Y is the 1 × n row vec-
tor ormatrix Y ′ =

(
Y1 Y2 . . . Yn

)
* The transpose of the n × p matrix X is

X ′ =


1 1 . . . 1

X11 X21 . . . Xn1
X12 X22 . . . Xn2

...
... . . . ...

X1,p−1 X2,p−1 . . . Xn,p−1


We can compute X ′Y , let’s try it!

X ′Y =


∑n

i=1 Yk∑n
i=1 YkXi1

...∑n
i=1 YkXi,p−1


Aha! We have the

∑n
i=1 Yk that appears in the first normal equation and the

∑n
i=1 YkXik terms that appear

in the remaining p − 1 normal equations. What about the terms involving b and elements of X? A natural
quantity to consider is Xb. Let’s compute that!

Xb =


b0 +

∑p−1
k=1 bkX1k

b0 +
∑p−1

k=1 bkX2k

...
b0 +

∑p−1
k=1 bkXnk


This isn’t quite what we’re looking for. We are missing terms involving squares X2

ik and products XikXil for
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l ̸= k. This suggests seeing what we get if we multiply by X ′ to get a p × 1 vector:

X ′Xb =


1 1 . . . 1

X11 X21 . . . Xn1
X12 X22 . . . Xn2

...
... . . . ...

X1,p−1 X2,p−1 . . . Xn,p−1




b0 +
∑p−1

k=1 bkX1k

b0 +
∑p−1

k=1 bkX2k

...
b0 +

∑p−1
k=1 bkXnk



=



∑n
i=1 b0 +

∑p−1
k=1 bkXik∑n

i=1 Xi1

(
b0 +

∑p−1
k=1 bkXik

)
∑n

i=1 Xi2

(
b0 +

∑p−1
k=1 bkXik

)
...∑n

i=1 Xi,p−1

(
b0 +

∑p−1
k=1 bkXik

)



=



∑n
i=1 b0 +

∑p−1
k=1 bkXik∑n

i=1 b1X2
i1 + b0Xi1 +

∑p−1
l=2 blXi1Xil∑n

i=1 b2X2
i2 + b0Xi2 + b1Xi1Xi2 +

∑p−1
l=3 blXikXil

...∑n
i=1 bp−1X2

i,p−1 + b0Xi,p−1 +
∑p−2

l=1 blXilXi,p−1


The first element of X ′Xb minus the first element of X ′Y set equal to 0 gives us the first normal equation!
The second element of X ′Xb minus the second element of X ′Y set equal to 0 gives us the first normal
equation! And so on!

Note: Two vectors or matrices are said to be equal if they have the same dimension and all of
the corresponding elements are equal, i.e. if A is an r × c matrix and B is an r × c matrix, then
elements of A = B indicates that aij = bij for i = 1, . . . r and j = 1, . . . c.

Note: The difference of two vectors or matrices of the same dimensions is the difference of their
elements, i.e. if A is an r × c matrix and B is an r × c matrix, then elements of D = A − B
satisfy dij = aij − bij .

Accordingly, if 0 is a p × 1 vector with all elements exactly equal to zero, we can write all p of the normal
equations simultanously using linear algebra as:

X ′Xb − X ′Y = 0.

This equation is a “nice’ ’ function of b! A few more linear algebra facts will allow us to solve it.

Note: The sum of two vectors or matrices of the same dimensions is the sum of their elements,
i.e. if A is an r × c matrix and B is an r × c matrix, then elements of D = A + B satisfy
dij = aij + bij .

X ′Xb = X ′Y

Note: The identity matrix or unit matrix is denoted by I. It is a diagonal matrix whose
elements on the main diagonal Ikk are all equal to 1, and remaining elements are equal to 0.
Premultiplying or postmultiplying any r × r matrix A by the r × r identity matrix I leaves A
unchanged, i.e. IA = A and A = AI.
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Note: The inverse of a r × r square matrix A is another r × r square matrix, denoted by A−1,
such that A−1A = I. The inverse matrix A−1 exists if the matrix A is rank r, i.e. if A is
nonsingular or full rank. A matrix with rank less than r is said to be singular or not of full
rank. The inverse of a matrix with with rank r also has rank r.

If X ′X is full rank, then we have a closed form solution for b:

b =
(
X ′X

)−1
X ′Y

Note: X ′X is full rank when there we cannot write any column of X as a linear combination of
the remaining columns of X. Practically, this means that X ′X is never full rank when n < p.

Example 1: Let’s return to the data from portrait studios in 21 cities run by Dwaine Studios,
Inc. The studios specialize in portraits of children. Let X1 be the number of persons aged 16 or
younger in a city, let X2 refer to per capita disposable income in a city, and let Y be the sales of
portraits of children in that city from one of the 21 studies. We’re going to construct an design
matrix and compute b0, b1, and b2 by hand.

load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/dwaine.RData")
X1 <- data$X1 # Extract the first predictor
X2 <- data$X2 # Extract the second predictor
Y <- data$Y # Extract the response
n <- length(Y) # Record the number of observations
X <- cbind(rep(1, n), X1, X2)
XtY <- t(X)%*%Y # Compute X'Y
XtX <- t(X)%*%X # Compute X'X
XtX.inv <- solve(XtX) # Invert XtX
b <- XtX.inv%*%XtY # Solve for b
b0 <- b[1] # Extract the intercept
b1 <- b[2] # Extract b1
b2 <- b[3] # Extract b2

We obtain estimates b0 = −68.857, b1 = 1.455, and b2 = 9.366. These are the same numbers we
got from lm previously!

Now that we’ve introduced linear algebra, it’s worth noting that we can write the linear regression model and
Q, the sum of squares criterion using linear algebra.

Letting ϵ =


ϵ1
ϵ2
...

ϵn

, the linear regression model for a dependent variable or response Y and independent

variables, predictors, or covariates X1, . . . Xp−1 is defined as:

Y = Xβ + ϵ

where:

• The elements of β =


β0
β1
...

βp−1

 are parameters

• The elements of the n × p matrix X =


1 X11 X12 . . . X1,p−1
1 X21 X22 . . . X2,p−1
...

...
... . . . ...

1 Xn1 Xn2 . . . Xn,p−1

 are known constants
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• For i = 1, . . . , n, ϵi is a random error term with mean E {ϵi} = 0 and variance σ2 {ϵi} = σ2; ϵi and ϵj

are uncorrelated so that their covariance is zero (i.e., σ {ϵi, ϵj} = 0 for all i, j; i ̸= j)

The p × 1 vector of estimated regression coefficients b corresponds to the value of β that minimizes

Q = (Y − Xβ)′ (Y − Xβ)

Accordingly, the p normal equations are obtained by taking the derivative of Q with respect to β and setting
them equal to 0. We can see this by first expanding out Q, and then taking derivatives.

Q = Y ′Y − Y ′Xβ − (Xβ)′
Y + (Xβ)′ (Xβ)

Note: Given two 1 × p vectors a and c, a′c = c′a.

Q = Y ′Y − 2Y ′Xβ + (Xβ)′ (Xβ)

Note: The transpose of a product of matrices (AB)′ is obtained by reversing the order of the
elements in the product and taking the transpose of each, B′A′.

Q = Y ′Y − 2Y ′Xβ + β′X ′Xβ

Note: Given an 1 × p vector A, the derivative of Aβ with respect to β is A.

∂Q

∂β
= −2Y ′X + ∂Q

∂β
β′X ′Xβ

Note: Given an 1 × p vector A, the derivative of β′Aβ with respect to β is 2β′A.

∂Q

∂β
= −2Y ′X + 2β′X ′X

If we substitute b in for β, this looks very similar to the expression we got for the normal equations but
transposed and multiplied by 2. Substituting b in for β and taking the transpose, we get:

−2X ′Y + 2X ′Xb = 0

Dividing by 2 and rearranging yields our normal equations:

X ′Xb − X ′Y = 0

Ta-da!
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