Notes 6

Maryclare Griffin

These notes are based on Chapters 1, 5, and 6 of KNNL.

Recall the linear regression model, which we can now write out using linear algebra. Let $\boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$.

Note: Given an $r \times 1$ vector \boldsymbol{A} with elements A_i that are random variables, the expected value of \boldsymbol{A} , denoted by $\boldsymbol{E} \{A\}$, is an $r \times 1$ vector:

$$\boldsymbol{E} \left\{ \boldsymbol{A} \right\} = \boldsymbol{E} \left\{ \left(\begin{array}{c} A_1 \\ A_2 \\ \vdots \\ A_r \end{array} \right) \right\} = \left(\begin{array}{c} E \left\{ A_1 \right\} \\ E \left\{ A_2 \right\} \\ \vdots \\ E \left\{ A_r \right\} \end{array} \right)$$

Note: Given an $r \times 1$ vector \boldsymbol{A} with elements A_i that are random variables, the variance of \boldsymbol{A} , denoted by $\boldsymbol{\sigma}^2 \{A\}$, is an $r \times r$ matrix:

$$\boldsymbol{\sigma}^{2} \left\{ \boldsymbol{A} \right\} = \boldsymbol{\sigma}^{2} \left\{ \begin{pmatrix} A_{1} \\ A_{2} \\ \vdots \\ A_{r} \end{pmatrix} \right\} = \begin{pmatrix} \sigma^{2} \left\{ A_{1} \right\} & \sigma \left\{ A_{1}, A_{2} \right\} & \dots & \sigma \left\{ A_{1}, A_{r} \right\} \\ \sigma \left\{ A_{1}, A_{2} \right\} & \sigma^{2} \left\{ A_{2} \right\} & \dots & \sigma \left\{ A_{2}, A_{r} \right\} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma \left\{ A_{1}, A_{r} \right\} & \sigma \left\{ A_{2}, A_{r} \right\} & \dots & \sigma^{2} \left\{ A_{r} \right\} \end{pmatrix}$$

The linear regression model for a dependent variable or response Y and independent variables, predictors, or covariates X_1, \ldots, X_{p-1} is defined as:

$$Y = X\beta + \epsilon$$

where:

• The elements of
$$\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix}$$
 are parameters
• The elements of the $n \times p$ matrix $\boldsymbol{X} = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \dots & X_{2,p-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{n,p-1} \end{pmatrix}$ are known constants
• $\boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$ is a random error term with mean $\boldsymbol{E} \{ \boldsymbol{\epsilon} \} = \boldsymbol{0}$ and variance $\boldsymbol{\sigma}^2 \{ \boldsymbol{\epsilon} \} = \boldsymbol{\sigma}^2 \boldsymbol{I}$.

The least squares minimizing estimator \boldsymbol{b} is given by:

$$\boldsymbol{b} = \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Y}$$

Note: Given an $c \times s$ matrix \boldsymbol{B} with elements B_{ij} that are random variables, and $r \times c$ and $s \times f$ matrices \boldsymbol{A} and \boldsymbol{D} with elements A_{ij} and D_{ij} that are fixed constants, the expected value of \boldsymbol{ABD} , denoted by $\boldsymbol{E} \{\boldsymbol{ABD}\}$, is an $r \times f$ matrix:

$E \{ABD\} = AE \{B\} D$

Using the above fact about expectations of products of matrices, we can show that the least squares estimator is unbiased for β when the linear regression model holds. We have:

$$E \{ \boldsymbol{b} \} = \mathbb{E} \left\{ \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Y} \right\}$$
$$= \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \mathbb{E} \{ \boldsymbol{Y} \}$$
$$= \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \mathbb{E} \{ \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{\epsilon} \}$$
$$= \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \left(\boldsymbol{X} \boldsymbol{\beta} + \mathbb{E} \{ \boldsymbol{\epsilon} \} \right)$$
$$= \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{X} \boldsymbol{\beta}$$
$$= \boldsymbol{\beta}$$

It follows that $\hat{Y} = Xb$, which we will refer to as the **fitted values**, estimated regression function, or the estimated mean response is an unbiased estimator for $E\{Y\} = X\beta$.

Note: Given an $c \times 1$ vector **B** with elements B_i that are random variables, and $r \times c$ matrix **A** with elements A_{ij} that are fixed constants, the variance of **AB**, denoted by $\sigma^2 \{AB\}$, is an $r \times r$ matrix:

$$\sigma^{2} \left\{ AB
ight\} = A\sigma^{2} \left\{ B
ight\} A'$$

Using the above fact about the variance of a product of a fixed matrix and a random vector, we can also derive the variance of the least squares estimator,

$$\sigma^{2} \{ \boldsymbol{b} \} = \sigma^{2} \left\{ \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Y} \right\}$$
$$= \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \sigma^{2} \{ \boldsymbol{Y} \} \boldsymbol{X} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1}$$
$$= \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \sigma^{2} \{ \boldsymbol{\epsilon} \} \boldsymbol{X} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1}$$
$$= \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \left(\sigma^{2} \boldsymbol{I} \right) \boldsymbol{X} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1}$$
$$= \sigma^{2} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{X} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1}$$
$$= \sigma^{2} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1}$$

Without knowing σ^2 , the variance of the least squares estimator **b** is unknown. Nonetheless, we can state that the least squares estimator **b** is has the lowest variance of all estimators of β that are linear in **Y**.