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These notes are based on Chapters 1, 5, and 6 of KNNL.

The linear regression model for a dependent variable or response Y and independent variables, predictors, or
covariates X1, . . . Xp−1 is defined as:

Y = Xβ + ϵ

where:

• The elements of β =


β0
β1
...

βp−1

 are parameters

• The elements of the n × p matrix X =


1 X11 X12 . . . X1,p−1
1 X21 X22 . . . X2,p−1
...

...
... . . . ...

1 Xn1 Xn2 . . . Xn,p−1

 are known constants

• ϵ =


ϵ1
ϵ2
...

ϵn

 is a random error term with mean E {ϵ} = 0 and variance σ2 {ϵ} = σ2In.

The least squares minimizing estimator b is given by:

b =
(
X ′X

)−1
X ′Y

Recall that the variance of the least squares estimator is:

σ2 {b} = σ2 (
X ′X

)−1

Without knowing σ2, the variance of the least squares estimator b is unknown. In practice, we will estimate
σ2 in order to estimate the variance of the least squares estimator b. Recall that σ2 is the variance of the
random errors, ϵ. We do not observe the random errors, but we can estimate them and, accordingly, σ2.
Given that Y = Xβ + ϵ and given that Ŷ is an unbiased estimator of Xβ, a natural estimator of ϵ is
e = Y − Ŷ . We will refer to e as the residuals. Each values of the residuals ei = Yi − Ŷi describes the
deviation of the corresponding observed value Yi from the fitted value Ŷi.

A naive estimator of σ2 might be obtained by computing the sample variance of the residuals e. Letting
ē = 1

n

∑n
i=1 ei be the sample mean of the residuals, the sample variance is

1
n − 1

n∑
i=1

(ei − ē)2
.
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An important property of the residuals e allows us to simplify this expression. Under the linear model with
an intercept, i.e. with Xi0 = 1 for all i = 1, . . . , n, ē = 0.

1
n − 1

n∑
i=1

e2
i

To assess if this is a good estimator of σ2, we will take its expectation.

E

{
1

n − 1

n∑
i=1

e2
i

}
= 1

n − 1

n∑
i=1

E
{

e2
i

}
.

To make this simpler, we’re going to use some more linear algebra! We can recognize that

E

{
1

n − 1

n∑
i=1

e2
i

}
= 1

n − 1E

{
n∑

i=1
e2

i

}

= 1
n − 1E {e′e}

We’re going to see identity matrices of different dimensions up ahead, so we’ll introduce some more notation.
Let Im refer to an m × m identity matrix. Each e can be written as a product of a matrix of fixed, constant
elements and a vector of random variables, specifically Y :

e = Y − Xb

= Y − X
(
X ′X

)−1
X ′Y

=
(

In − X
(
X ′X

)−1
X ′

)
Y

=
(

In − X
(
X ′X

)−1
X ′

)
(Xβ + ϵ)

=
(

X − X
(
X ′X

)−1
X ′X

)
β +

(
In − X

(
X ′X

)−1
X ′

)
ϵ

=
(

In − X
(
X ′X

)−1
X ′

)
ϵ

For convenience, we will define H = X
(
X ′X

)−1
X ′, so that we can parsimoniously write e = (In − H) ϵ.

Now let’s plug this into our expression for E
{

1
n−1

∑n
i=1 e2

i

}
.

E

{
1

n − 1

n∑
i=1

e2
i

}
= 1

n − 1E
{

((In − H) ϵ)′ (In − H) ϵ
}

= 1
n − 1E

{
ϵ′ (In − H)′ (In − H) ϵ

}
= 1

n − 1E {ϵ′ (In − H) ϵ}

The last step follows from expanding out (In − H)′ (In − H), plugging in H = X
(
X ′X

)−1
X ′, simplifying,

and rewriting in terms of In and H.

Note: Given a square r × r matrix A that is symmetric, with Aij = Aji for all i, j = 1, . . . , r,
the transpose of A is A itself, i.e. A′ = A.

We are not quite done, because E {ϵ′ (In − H) ϵ} is not a quantity we can readily take an expectation of. We
only know how to compute expectations involving matrix products when the matrix product has a “sandwich”
type form, with the matrix/matrices involving random elements in the middle (the “meat” of the “sandwich”)
and the matrix/matrices with fixed elements on the outside (the “filling” of the “sandwich”) . To rewrite this
expectation in a “sandwich” type form, we’re going to need the trace of a matrix.
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Note: Given a square r × r matrix A, the trace of a matrix tr (A) is the sum of its diagonal
elements, tr (A) =

∑r
k=1 Akk.

Using this fact about the trace, we can recognize that the 1 × 1 matrix ϵ′ (In − H) ϵ is equal to the trace of
the 1 × 1 matrix tr (ϵ′ (In − H) ϵ). How is this helpful? We need another trace fact.

Note: Given an r × c matrix A, a c × s matrix B, and a s × r matrix D, the trace of the product
matrix tr (ABC) has a cyclic property that allows the elements to be rearranged, specifically
cyclically permuted. This means:

tr (ABC) = tr (BCA) = tr (CAB)

This allows us to go a step further, letting:

E

{
1

n − 1

n∑
i=1

e2
i

}
= 1

n − 1E {tr (ϵ′ (In − H) ϵ)}

= 1
n − 1E {tr ((In − H) ϵϵ′)}

= 1
n − 1tr ((In − H) E {ϵϵ′})

The last step follows from recognizing that the trace of a matrix is just a special sum, so the expectation of
the trace of a matrix E {tr (A)} is the trace of the expectation, E {tr (A)} = tr (E {A}).

Now we can really start getting somewhere! Using what we have assumed about the mean and variance of ϵ,
we have:

E

{
1

n − 1

n∑
i=1

e2
i

}
= 1

n − 1tr
(
(In − H)

(
σ2In

))
= σ2

n − 1tr ((In − H))

= σ2

n − 1 (tr (In) − tr (H))

= σ2

n − 1

(
n − tr

(
X

(
X ′X

)−1
X ′

))
= σ2

n − 1

(
n − tr

((
X ′X

)−1
X ′X

))
= σ2

n − 1 (n − tr (Ip))

= σ2

n − 1 (n − p)

= σ2
(

n − p

n − 1

)

Putting this all together, we have that the expectation of the sample variance of the residuals is 1
n−1

∑n
i=1 e2

i =
σ2

(
n−p
n−1

)
.

This is only unbiased for σ2 when p = 1, which is when we do not have any predictors. This suggests that
we define the following unbiased estimator for σ2, that is unbiased for any p ≥ 0

1
n − p

n∑
i=1

e2
i .
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We will refer to this estimator going forward as s2 or MSE, i.e.

s2 = MSE = 1
n − p

n∑
i=1

e2
i .

Remember - we went down this path because the variance of the least squares estimator b involved σ2, which
is unknown. Accordingly, we can now define the estimated variance of the least squares estimator,

s2 {b} = s2 (
X ′X

)−1
.

Putting this all together, this means that we can compute the least squares estimator b given data, know
that it is an unbiased for β, and obtain an estimated variance of b about its mean β by computing s2 {b}.

Example: Let’s return to the data from portrait studios in 21 cities run by Dwaine Studios,
Inc. The studios specialize in portraits of children. Let X1 be the number of persons aged 16 or
younger in a city, let X2 refer to per capita disposable income in a city, and let Y be the sales
of portraits of children in that city from one of the 21 studies. Previously, we’re constructed an
design matrix and compute b0, b1, and b2 by hand. Now we’re going to go a step further, and
compute s2, the estimated variance of b, fitted values Ŷ , and the estimated variance of the fitted
values Ŷ .

load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/dwaine.RData")
X1 <- data$X1 # Extract the first predictor
X2 <- data$X2 # Extract the second predictor
Y <- data$Y # Extract the response
n <- length(Y) # Record the number of observations
p <- 3 # Record the number of predictors + 1
X <- cbind(rep(1, n), X1, X2)
XtY <- t(X)%*%Y # Compute X'Y
XtX <- t(X)%*%X # Compute X'X
XtX.inv <- solve(XtX) # Invert XtX
b <- XtX.inv%*%XtY # Solve for b
b0 <- b[1] # Extract the intercept
b1 <- b[2] # Extract b1
b2 <- b[3] # Extract b2

Y.hat <- X%*%b # Compute fitted values
e <- Y - Y.hat # Compute residuals

s.sq <- sum(eˆ2)/(n - p) # Compute unbiased estimator of sigmaˆ2
s.sq.b <- s.sq*XtX.inv # Compute estimated variance of b

s.sq.b0 <- s.sq.b[1, 1] # Extract the estimated variance of b_0
s.sq.b1 <- s.sq.b[2, 2] # Extract the estimated variance of b_1
s.sq.b2 <- s.sq.b[3, 3] # Extract the estimated variance of b_2

We obtain estimates b0 = −68.857, b1 = 1.455, and b2 = 9.366, an estimate s2 = 121.163
of the noise variance σ2, and variance estimates s2 {b0} = 3602.035, s2 {b1} = 0.045, and
s2 {b2} = 16.516.
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We could have also obtained these variance estimates from lm directly!
linmod <- lm(Y~X1+X2) # Fit linear model to our data
summary(linmod)

##
## Call:
## lm(formula = Y ~ X1 + X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.4239 -6.2161 0.7449 9.4356 20.2151
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -68.8571 60.0170 -1.147 0.2663
## X1 1.4546 0.2118 6.868 2e-06 ***
## X2 9.3655 4.0640 2.305 0.0333 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.01 on 18 degrees of freedom
## Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075
## F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10

The residual standard error corresponds to s =
√

MSE, and the corresponding degrees
of freedom gives n − p for this dataset. The standard errors for each estimated regression
coefficient correspond to the square roots of the estimated variances, i.e. the standard error of b0
is

√
s2 {b0} = s {b0}. We can extract them directly from lm going forward, so we don’t have to

compute them by hand every time.
s <- summary(linmod)$s
s.b0 <- summary(linmod)$coef[1, 2]
s.b1 <- summary(linmod)$coef[2, 2]
s.b2 <- summary(linmod)$coef[3, 2]

Using similar logic, we can also compute the fitted values Ŷ = Xb, know that they are unbiased for Xβ,
and obtain an estimated variance of Ŷ about its mean Xβ.

To obtain an estimated variance of Ŷ , we first compute the variance of the fitted values:

σ2
{

Ŷ
}

=σ2
{

Ŷ
}

=σ2
{

X
(
X ′X

)−1
X ′Y

}
=σ2 {HY }
=σ2 {Hϵ}
=Hσ2 {ϵ} H ′

=H
(
σ2In

)
H ′

=σ2HH ′

=σ2H

It follows that we can define an estimated variance of Ŷ about its mean Xβ to be

s2
{

Ŷ
}

= s2H
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Going back to the data, let’s compute the estimated variance of the standard errors.
H <- X%*%XtX.inv%*%t(X)
s.sq.Y.hat <- s.sq*H

There are a lot of fitted values to summarize, so let’s just zoom in on one - the fitted value for
the second observation Ŷ2 and its estimated variance s2

{
Ŷ2

}
Y.hat.2 <- Y.hat[2]
s.sq.Y.hat.2 <- s.sq.Y.hat[2, 2]

We obtain a fitted value of Ŷ2 = 154.229 and an estimated variance of s2
{

Ŷ2

}
= 12.643.

If we don’t want to do this by hand, the lm function alone does not directly return the estimated
variances of the fitted values. To obtain them, we need to apply the predict function to the
saved output from lm.

pred <- predict(linmod, se.fit = TRUE) # Obtain fitted values and their standard errors
Y.hat <- pred$fit # Extract fitted values
s.Y.hat <- pred$se.fit # Extract standard errors

The standard errors returned by predict correspond to the square roots of the estimated variances
we computed earlier, i.e. they correspond to

√
s2 {Y } = s {Y }.

To wrap up, we’ll introduce one more concept! Often, it can be useful to summarize how much of the observed
variability in the response can be attributed to the variability of the fitted values. We can think of this as
summarizing what proportion of the variation in the data is explained by our linear model. We refer to this
as R2, and it is defined as:

R2 = 1 −
∑n

i=1 e2
i∑n

i=1
(
Yi − Ȳ

)2

The denominator
∑n

i=1
(
Yi − Ȳ

)2 is often called the total sum of squares, and the numerator
∑n

i=1 e2
i is

often called the residual sum of squares or SSR, for sum of squared residuals.
sse <- sum(eˆ2)
ssto <- sum((Y - mean(Y))ˆ2)
r.sq <- 1 - sse/ssto

We obtain R2 = 0.917, which tells us that approximately 92% of the variability in sales of portraits
of children in the Dwaine data can be attributed to variability in the number of persons aged 16
or younger in a city and per capita disposable income.

R2 is also included in the output of lm. We can find it above in the printed summary, and we can
also extract it from the lm object.

r.sq <- summary(linmod)$r.sq
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