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These notes are based on Chapters 1 and 6 of KNNL.

So far, we have not assumed a specific distribution for the errors. Going forward, we will assume that the
errors are normally distributed. This will allow us to describe the distribution of the estimated regression
coefficients and fitted values, in addition to their means and variances.

The normal error linear regression model for a dependent variable or response Y and independent
variables, predictors, or covariates X1, . . . Xp−1 is defined as:

Y = Xβ + ϵ

where:

• The elements of β =


β0
β1
...

βp−1

 are parameters

• The elements of the n × p matrix X =


1 X11 X12 . . . X1,p−1
1 X21 X22 . . . X2,p−1
...

...
... . . . ...

1 Xn1 Xn2 . . . Xn,p−1

 are known constants

• ϵ =


ϵ1
ϵ2
...

ϵn

 is a random error term elements that are ϵi that are independent and normally distributed

with mean E {ϵi} = 0 and variance σ2 {ϵi} = σ2.

Going forward, we will always be using the normal error linear regression model unless otherwise specified.

Setting aside everything we’ve done the past couple weeks, let’s revisit the question of how we might estimate
β under this model. Now that we have assumed a distribution for the errors, maximum likelihood is an
option! First, we need to determine the distribution of the observed data under the normal error regression
model.

Note: If Z is a normal random variable and a and c are fixed constants, then the transformed
variable V = a + cZ is normally distributed, wtih mean E {V } = a + cE {Z} and variance
σ2 {V } = c2σ2 {Z}.

Accordingly, each Yi = β0+
∑p−1

k=1 βkXik+ϵi is a normal random variable with mean E {Yi} = β0+
∑p−1

k=1 βkXik

and variance σ2 {Yi} = σ2, and that each Yi is independent of Yj for all j ̸= i.

Note: If Z is a normal random variable with mean µ and variance σ2, then the density function
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of Z is

f (Z) = 1√
2πσ2

exp
{

− 1
2σ2 (Z − µ)2

}
.

The likelihood of the data Y given the parameters β, the predictors X, and the noise variance σ2 under
the normal error linear regression model is:

L =
n∏

i=1
f (Yi) =

n∏
i=1

1√
2πσ2

exp

− 1
2σ2

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2
=
(

1√
2πσ2

)n n∏
i=1

exp

− 1
2σ2

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2
=
(

1√
2πσ2

)n

exp

− 1
2σ2

n∑
i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2 .

What values of σ2 and β maximize the likelihood L?

To answer that, we need to take derivatives with respect to σ2 and elements of β and find the values that set
them equal to 0. However, we can tell this is going to be a bit of a pain just by examining how L depends on
β; the term exp

{
− 1

2σ2

∑n
i=1

(
Yi −

(
β0 +

∑p−1
k=1 βkXik

))2
}

is going to have some complicated derivatives.

Fortunately, finding the values of σ2 and β that maximize the likelihood L is equivalent to finding the values
of σ2 and β that maximize the log-likelihood ℓ = log (L)! This is a consequence of the fact that log (x) is a
monotonic, increasing function of x.

ℓ = log

( 1√
2πσ2

)n

exp

− 1
2σ2

n∑
i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2


= nlog
(

1√
2πσ2

)
− 1

2σ2

n∑
i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2

= −nlog
(√

2π
)

−
(n

2

)
log
(
σ2)− 1

2σ2

n∑
i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2

Aha! This depends on β in a much nicer way! Now to find the values of σ2 and β maximize the likelihood
log (L), we need to take derivatives, not only with respect to β0, β1, . . . , βp−1 but also σ2.

Before we take a lot of derivatives, maybe there’s a shortcut. Let’s see if we can use the derivative with
respect to σ2 to find an expression for the value σ̂2 that maximizes ℓ for fixed values of β. If we can, we can
plug it into ℓ and then only have to worry about maximizing over β as opposed to maximizing over β and σ2.

The derivative of ℓ with respect to σ2 is

−
(n

2

)( 1
σ2

)
−
(

− 1
σ4

)
1
2

n∑
i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2

.

Letting σ̂2 refer to the value of σ2 that sets this derivative equal to 0 and simplifying, we have

−n

(
1
σ̂2

)
+
(

1
σ̂4

) n∑
i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2

= 0.
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Rearranging and multiplying through by σ̂4 yields:

nσ̂2 =
n∑

i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2

=⇒ σ̂2 = 1
n

n∑
i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2

.

Great! Let’s plug this expression for σ̂2 into ℓ for σ2:

ℓ = − nlog
(√

2π
)

−
(n

2

)
log

 1
n

n∑
i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2−

1

2
(

1
n

∑n
i=1

(
Yi −

(
β0 +

∑p−1
k=1 βkXik

))2
) n∑

i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2

.

We can simplify this a lot! The sums of squares
∑n

i=1

(
Yi −

(
β0 +

∑p−1
k=1 βkXik

))2
in the last term cancel,

yielding

ℓ = − nlog
(√

2π
)

−
(n

2

)
log

 n∑
i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2−
(n

2

)
log (n) − n

2 .

The only part of this equation that depends on β is the middle term, −
(

n
2
)

log
(∑n

i=1

(
Yi −

(
β0 +

∑p−1
k=1 βkXik

))2
)

!
Thus, maximizing ℓ with respect to β is equivalent to maximizing

−
(n

2

)
log

 n∑
i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2 .

Multiplying by a positive constant
(

n
2
)

and taking the logarithm does not change the values of β that
maximize the function, so maximizing ℓ with respect to β is equivalent to maximizing

−
n∑

i=1

(
Yi −

(
β0 +

p−1∑
k=1

βkXik

))2

.

Remember,
∑n

i=1

(
Yi −

(
β0 +

∑p−1
k=1 βkXik

))2
is the least squares objective Q that we minimized to obtain

the least squares estimates b of β! Substituting Q in for
∑n

i=1

(
Yi −

(
β0 +

∑p−1
k=1 βkXik

))2
and remembering

that maximizing the negative of a function is the same as minimizing it, we can see that maximizing ℓ with
respect to β is equivalent to minimizing Q!

Thus, the maximum likelihood estimate β̂ of β is equal to the least squares estimate b of β, i.e. β̂ = b!!!

This is very convenient, it means that when we assume the normal errors linear regression model, our
maximum likelihood estimate is the same as the least squares estimate! As a result, all of the derivations
we did in the past few weeks to obtain the least squares estimator b and derive its properties apply to the
maximum likelihood estimator β̂ as well. This is a nice coincidence that is a direct result of assuming that
the normal errors. If we had assumed another distribution for the errors, it might not have been true.
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