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These notes are based on Chapters 2 and 6 of KNNL.

From now on, we will assume the normal error linear regression model for a dependent variable or
response Y and independent variables, predictors, or covariates X1, . . . Xp−1 is defined as:

Y = Xβ + ϵ

where:

• The elements of β =


β0
β1
...

βp−1

 are parameters

• The elements of the n × p matrix X =


1 X11 X12 . . . X1,p−1
1 X21 X22 . . . X2,p−1
...

...
... . . . ...

1 Xn1 Xn2 . . . Xn,p−1

 are known constants

• ϵ =


ϵ1
ϵ2
...

ϵn

 is a random error term elements that are ϵi that are independent and normally distributed

with mean E {ϵi} = 0 and variance σ2 {ϵi} = σ2.

Under the normal error linear regression model, we have shown that:

• b =
(
X ′X

)−1
X ′Y is the least squares estimator of β

• b is also the maximum likelihood estimator for β
• E {b} = β

• σ2 {b} = σ2 (
X ′X

)−1

• Letting E = Y − Xb, s2 = 1
n−p

∑n
i=1 e2

i is unbiased for σ2

• An estimator of σ2 {b} = σ2 (
X ′X

)−1 is s2 {b} = s2 (
X ′X

)−1
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Note: If Z is a p × 1 vector of independent normal random variables with p × 1 mean E {Z} = µ
and p × p variance

σ2 {Z} = Σ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

... . . . ...
0 0 . . . σ2

p


and A is a fixed p × p matrix, then V = AZ is a multivariate normal random variable with
mean E {V } = Aµ and variance σ2 {V } = AΣA′.

It follows that b is a multivariate normal random variable with mean E {b} = β and variance σ2 {b} =
σ2 (

X ′X
)−1. What if we want to talk about the distribution of an element of b, bk?

Note: If Z is a p × 1 multivariate normal random variable with p × 1 mean E {Z} = µ and p × p
variance

σ2 {Z} = Σ =


σ2

1 σ12 . . . σ1p

σ21 σ2
2 . . . σ2p

...
... . . . ...

σp1 σp2 . . . σ2
p


then each element Zk is a (univariate) normal random variable with mean E {Zk} = µk and
variance σ2 {Zk} = σ2

k.

Accordingly, each element bk of b is a normal random variable with mean E {bk} = βk and variance
σ2 {bk} = σ2 (

X ′X
)−1

kk
, where

(
X ′X

)−1
kk

refers to the k-th diagonal element of
(
X ′X

)−1 in row k and
column k.

We will refer to the normal distribution with mean E {bk} = βk and variance σ2 {bk} = σ2 (
X ′X

)−1
kk

as the
sampling distribution of bk.

Example 1: Consider data from a company that manufactures refrigeration equipment, called
the Toluca company. They produce refrigerator parts in lots of different sizes, and the amount of
time it takes to produce a lot of refrigerator parts depends on the number of parts in the lot and
several other variable factors. Let X be the number of refrigerator plots in a lot, and let Y refer
to the amount of time it takes to produce a size of lot X. Imagine that we magically knew that
the true values β0 = 62, β1 = 3.5, and σ2 = 2, 500 (this would not happen in real life). We can
simulate values of b1 under this model. The sampling distribution describes the distribution of
the simulated values.

load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/toluca.RData")
# Extract number of observations
n <- nrow(data)
# Construct the design matrix
X <- cbind(rep(1, n), data$X)

# Set true values
beta <- c(62, 3.5)
sigma.sq <- 2500

# Decide how many simulated datasets we want to create
nsim <- 10000
# Create a vector where we'll record corresponding b1 estimates
b1s <- numeric(nsim)
# To ensure that we obtain the same results every time we run this
# code, we need to set a seed. You can pick any number - I have picked 100.
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set.seed(100)

for (i in 1:nsim) {
# Simulate errors
epsilon <- rnorm(n, mean = 0, sd = sqrt(sigma.sq))
# Simulate response
Y <- X%*%beta + epsilon
# Fit model to simulated data
XtX.inv <- solve(t(X)%*%X)
b <- XtX.inv%*%t(X)%*%Y
# Save coefficient
b1s[i] <- b[2]

}

# Make a histogram of the simulated values
hist(b1s, xlab = expression(b[1]), freq = FALSE, main = "")
b1vals <- seq(2, 5, length.out = 1000)
# Add the normal density for the sampling distribution to compare
lines(b1vals, dnorm(b1vals, mean = beta[2], sd = sqrt(sigma.sq*XtX.inv[2, 2])),

col = "blue")
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Figure 1: Example 1

In practice, we won’t know the true β. However, we might want to ask questions about what the true value
of βk might be. For example, we might want to ask if the true value of βk is equal to some specific number,
which we’ll call c. A natural thing to do would be to compare bk − c to the sampling distribution when
βk = c. Conveniently if βk = c, the sampling distribution of bk − c doesn’t depend on c at all! It is a
normal distribution with mean 0 and variance σ2 {bk}.

3



Example 2: Consider the same data. Imagine that we magically knew the true value σ2 = 2, 500
(this would not happen in real life). What if we want to ask if β1 = 0? It would make sense to
compare b1 − 0 = b1 to the sampling distribution of b1 when β1 = 0.

# Extract response
Y <- data$Y
# Compute least squares estimate
b <- XtX.inv%*%t(X)%*%Y

# Plot the sampling distribution of b_1 if \beta_1 = 0
b1vals <- seq(-5, 5, length.out = 1000)
# Add the normal density for the sampling distribution to compare
plot(b1vals, dnorm(b1vals, mean = 0, sd = sqrt(sigma.sq*XtX.inv[2, 2])),

col = "blue", type = "l",
xlab = expression(b[1]), ylab = "Density")

abline(v = b[2], lty = 2, col = "red")
legend("topleft", lty = 2, col = "red",

legend = expression(paste("Observed ", b[1], sep = "")),
bty = "n")
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Figure 2: Example 2

We can see that the observed value of b1 is very extreme when compared to the sampling
distribution of b1 when β1 = 0. This suggests that the true value of β1 is unlikely to be 0.
However, we had to pretend that we knew σ2 and accordingly, σ2 {b1} to reach this conclusion.
This is not realistic in practice.

This is really useful, but we can’t quite make use of it in practice because we won’t know σ2 {bk}. This leads
us to define another quantity if we want to ask questions about bk,

bk − βk

s {bk}
.

This quantity is an example of a studentized statistic. Importantly, its sampling distribution depends on
neither βk or σ2 {bk}. In fact, the sampling distribution of bk−βk

s{bk} is a t distribution with n − p degrees of
freedom under the normal errors regression model!

To understand why bk−βk

s{bk} is distributed according to a t distribution under the normal errors regression
model, we will first revisit the definition of a t random variable.

Note: Let z and v be independent standard normal (with mean 0 and variance 1) and χ2 (ν)
random variables. We define a t random variable as z√

v
ν

.
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We can recognize the standard normal part of bk−βk

s{bk} by dividing the numerator and denominator by σ {bk}:

bk − βk

s {bk}
=

bk−βk

σ{bk}
s{bk}
σ{bk}

The numerator bk−βk

σ{bk} is a normal random variable with mean 0 and variance 1, i.e. a standard normal random
variable. What about the denominator, s{bk}

σ{bk}? Is it the square root of a χ2 (ν) random variable that is
independent of the numerator, divided by ν?

Note: Let z1, . . . , zν be independent standard normal (with mean 0 and variance 1) and χ2 (ν)
random variables. We define a χ2 (ν) random variable as

∑ν
i=1 z2

i .

Expanding the denominator, we can rewrite it as follows and simplify:

s {bk}
σ {bk}

=

√√√√√
(

1
n−p

∑n
i=1 e2

i

) (
X ′X

)−1
kk

σ2
(
X ′X

)−1
kk

=

√∑n
i=1

(
ei

σ

)2

n − p

Using methods that are beyond the scope of this class, the numerator
∑n

i=1
(

ei

σ

)2 corresponds to the sum of
n − p independent standard normal random variables. Accordingly, s{bk}

σ{bk} is equal to the square root of a
χ2 (n − p) random variable divided by its degrees of freedom.

Now that we have decomposed bk−βk

σ{bk} into the ratio of a standard normal random variable bk−βk

σ{bk} and the
square root of a χ2 (n − p) random variable

∑n
i=1

(
ei

σ

)2 divided by its degrees of freedom, one question
remains. Are bk−βk

σ{bk} and
∑n

i=1
(

ei

σ

)2 independent?

They are, but it’s not obvious! The easiest way to show this is to recognize that bk−βk

σ{bk} only depends on the
data through b =

(
X ′X

)−1
X ′Y and

∑n
i=1

(
ei

σ

)2 only depends on the data through e.

The covariance of b and e can be computed using linear algebra.

σ {e, b} = E
{

eb′} − E {e} E {b}′

= E
{(

In − X
(
X ′X

)−1
X ′

)
ϵY ′X

(
X ′X

)−1
}

− 0β′

=
(

In − X
(
X ′X

)−1
X ′

)
E

{
ϵY ′} X

(
X ′X

)−1

=
(

In − X
(
X ′X

)−1
X ′

) (
σ2In

)
X

(
X ′X

)−1

= σ2
(

X
(
X ′X

)−1 − X
(
X ′X

)−1
X ′X

(
X ′X

)−1
)

= σ2
(

X
(
X ′X

)−1 − X
(
X ′X

)−1
)

= 0.

This allows us to conclude that b and e are uncorrelated, and because b and e are also both normal under
the normal errors linear regression model, we can conclude that they are independent as well. Accordingly,
bk−βk

σ{bk} and
∑n

i=1
(

ei

σ

)2 are independent.

Note: As ν → ∞, a t distribution with ν degrees of freedom becomes indistinguishable from a
normal distribution with mean 0 and variance 1, often called a standard normal distribution. It is
common practice to use the normal distribution in the place of the t distribution when ν ≥ 30.
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Example 3: Consider the same data, and once again imagine that we magically knew that the
true values β0 = 62, β1 = 3.5, and σ2 = 2, 500 (this would not happen in real life). We can
simulate values of b1−β1

s{b1} under this model. Again, the sampling distribution describes the
distribution of the simulated values.

# Create a vector where we'll record corresponding
# studentized b1 estimates
sb1s <- numeric(nsim)

for (i in 1:nsim) {
# Simulate errors
epsilon <- rnorm(n, mean = 0, sd = sqrt(sigma.sq))
# Simulate response
Y <- X%*%beta + epsilon
# Fit model to simulated data
XtX.inv <- solve(t(X)%*%X)
b <- XtX.inv%*%t(X)%*%Y
s.sq <- sum((Y - X%*%b)ˆ2)/(n - 2)
# Save studentized statistic
sb1s[i] <- (b[2] - beta[2])/sqrt(s.sq*XtX.inv[2, 2])

}

# Make a histogram of the simulated values
hist(sb1s, xlab = expression(paste(group("(", b[1] - beta[1], ")"),

"/",
s~group("{", b[1], "}"), sep = "")),

freq = FALSE, main = "",
ylim = c(0, 0.5))

sb1vals <- seq(-5, 5, length.out = 1000)
# Add the t density for the sampling distribution to compare
lines(sb1vals, dt(sb1vals, df = n - 2),

col = "blue")
# Add a standard normal density for comparison
lines(sb1vals, dnorm(sb1vals, mean = 0, sd = 1),

col = "red")
legend("topleft", col = c("blue", "red"),

legend = c(expression(t[n-2]), "Standard Normal"),
lty = 1, bty = "n")
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Figure 3: Example 3
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Using the studentized statistic, we can to ask if the true value of βk is equal to some specific number, which
we’ll call c, without needing to know σ2 or accordingly σ2 {bk}. The natural thing to do would be to compare
bk−c
s{bk} to the sampling distribution of bk−c

s{bk} when βk = c. Conveniently if βk = c, the sampling distribution
of bk−c

s{bk} doesn’t depend on c or any other unknown parameters!! It is a t distribution with n − p degrees of
freedom.

Example 4: Consider the same data. What if we want to ask if β1 = 0? It would make sense to
compare b1−0

s{b1} = b1
s{b1} to the sampling distribution of b1

s{b1} when β1 = 0.
# Extract response
Y <- data$Y
# Compute least squares estimate
b <- XtX.inv%*%t(X)%*%Y
b1 <- b[2]
s.sq <- sum((Y - X%*%b)ˆ2)/(n - 2)
s.b1 <- sqrt(s.sq*XtX.inv[2, 2])
# Plot the sampling distribution of b_1/s{b_1} if \beta_1 = 0
sb1vals <- seq(-15, 15, length.out = 1000)
# Add the normal density for the sampling distribution to compare
plot(sb1vals, dt(b1vals, n - 2),

xlab = expression(paste(b[1],
"/",
s~group("{", b[1], "}"), sep = "")),

col = "blue", type = "l", ylab = "Density")
abline(v = b1/s.b1, lty = 2, col = "red")
legend("topleft", lty = 2, col = "red",

legend = expression(paste("Observed ", b[1],
"/",
s~group("{", b[1], "}"), sep = "")),

bty = "n")
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Figure 4: Example 4

We can see that the observed value of b1
s{b1} is very extreme when compared to the sampling

distribution of b1
s{b1} when β1 = 0. This suggests that the true value of β1 is unlikely to be 0.
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