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These notes are based on Chapters 2 and 6 of KNNL.

From now on, we will assume the normal error linear regression model for a dependent variable or

response Y and independent variables, predictors, or covariates X, ... X, is defined as:
Y=XB+e
where:
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with mean E {¢;} = 0 and variance o2 {¢;} = o>

Under the normal error linear regression model, we have shown that:

e« b= (X’X)f1 X'Y is the least squares estimator of 8

e b is also the maximum likelihood estimator for 8

e 2{b} =02 (X'X)""

o Letting F=Y — Xb, s> = %p S €2 is unbiased for o2
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e An estimator of 02 {b} = o2 (X’X)_1 is 82 {b} = 52 (X’X)_1



Note: If Z is a p x 1 vector of independent normal random variables with p x 1 mean E{Z} = p
and p X p variance
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and A is a fixed p X p matrix, then V' = AZ is a multivariate normal random variable with
mean E{V} = Ap and variance 02 {V} = AT A’

It follows that b is a multivariate normal random variable with mean E {b} = B and variance o2 {b} =
o2 (X'X )_1. What if we want to talk about the distribution of an element of b, by?

Note: If Z is a p x 1 multivariate normal random variable with p x 1 mean F{Z} = pand p X p
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then each element Z is a (univariate) normal random variable with mean E {Z;} = p and
variance 0% {Z;,} = o3.

Accordingly, each element by of b is a normal random variable with mean E {by} = B and variance

o2 {by} = o> (X’X)]:kl, where (X’X)]:k1 refers to the k-th diagonal element of (X’X)_1 in row k and
column k.

We will refer to the normal distribution with mean E {b;y} = 8j and variance o2 {by} = o2 (X'X);k1 as the
sampling distribution of by.

Example 1: Consider data from a company that manufactures refrigeration equipment, called
the Toluca company. They produce refrigerator parts in lots of different sizes, and the amount of
time it takes to produce a lot of refrigerator parts depends on the number of parts in the lot and
several other variable factors. Let X be the number of refrigerator plots in a lot, and let Y refer
to the amount of time it takes to produce a size of lot X. Imagine that we magically knew that
the true values 8y = 62, 3; = 3.5, and ¢ = 2,500 (this would not happen in real life). We can
simulate values of b; under this model. The sampling distribution describes the distribution of
the simulated values.

load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/toluca.RData")
# Extract number of observations

n <- nrow(data)

# Construct the design matriz

X <- cbind(rep(l, n), data$X)

# Set true wvalues
beta <- c(62, 3.5)
sigma.sq <- 2500

# Decide how many simulated datasets we want to create

nsim <- 10000

# Create a vector where we'll record corresponding bl estimates

bls <- numeric(nsim)

# To ensure that we obtain the same results every time we run this

# code, we need to set a seed. You can pick any number - I have picked 100.



set.seed(100)

for (i in 1:nsim) {
# Simulate errors
epsilon <- rnorm(n, mean = 0, sd = sqrt(sigma.sq))
# Simulate response
Y <- XY*%beta + epsilon
# Fit model to simulated data
XtX.inv <- solve(t(X)%*%X)
b <- XtX.inv%*%t (X)%*%Y
# Save coefficient
bis[i] <- b[2]

# Make a histogram of the simulated values

hist(bls, xlab = expression(b[1]), freq = FALSE, main = "")

bilvals <- seq(2, 5, length.out = 1000)

# Add the mormal density for the sampling distribution to compare

lines(blvals, dnorm(blvals, mean = beta[2], sd = sqrt(sigma.sq*XtX.inv[2, 2])),
col = "blue")
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Figure 1: Example 1

In practice, we won’t know the true 8. However, we might want to ask questions about what the true value
of B might be. For example, we might want to ask if the true value of f; is equal to some specific number,
which we’ll call ¢. A natural thing to do would be to compare b; — ¢ to the sampling distribution when
Br = c. Conveniently if 5 = ¢, the sampling distribution of b, — ¢ doesn’t depend on ¢ at all! It is a
normal distribution with mean 0 and variance o2 {by}.



Example 2: Consider the same data. Imagine that we magically knew the true value o2 = 2, 500
(this would not happen in real life). What if we want to ask if ; = 07 It would make sense to
compare by — 0 = by to the sampling distribution of b when 3; = 0.

# Extract response

Y <- data$Y

# Compute least squares estimate
b < XtX.invt (X)%xhY

# Plot the sampling distribution of b_1 if \beta_1 = 0
bivals <- seq(-5, 5, length.out = 1000)
# Add the mormal density for the sampling distribution to compare
plot(blvals, dnorm(blvals, mean = 0, sd = sqrt(sigma.sg*XtX.inv[2, 2])),
col = "blue", type = "1",
xlab = expression(b[1]), ylab = "Density")
abline(v = b[2], 1ty = 2, col = "red")
legend("topleft”, 1ty = 2, col = "red",

legend = expression(paste("Observed ", b[1], sep = "")),
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Figure 2: Example 2

We can see that the observed value of by is very extreme when compared to the sampling
distribution of b; when §; = 0. This suggests that the true value of i is unlikely to be 0.
However, we had to pretend that we knew o? and accordingly, 0% {b;} to reach this conclusion.
This is not realistic in practice.

This is really useful, but we can’t quite make use of it in practice because we won’t know o2 {by}. This leads
us to define another quantity if we want to ask questions about by,

by, — B
s{br}

This quantity is an example of a studentized statistic. Importantly, its sampling distribution depends on

neither By or o2 {b;}. In fact, the sampling distribution of Zk{;f}k is a t distribution with n — p degrees of

freedom under the normal errors regression model!

To understand why bs’“{;ff is distributed according to a t distribution under the normal errors regression

model, we will first revisit the definition of a ¢ random variable.

Note: Let z and v be independent standard normal (with mean 0 and variance 1) and x? (v)
random variables. We define a ¢ random variable as —=

v "

v




We can recognize the standard normal part of ﬁf by dividing the numerator and denominator by o {by}:

br—p

by — Bk o Tor}
- s{b

stoed S

br—Br . . . . .
The numerator U’ﬂ{bf]’f is a normal random variable with mean 0 and variance 1, i.e. a standard normal random

variable. What about the denominator, ;{{b’“}f Is it the square root of a x? (v) random variable that is
independent of the numerator, divided by v?

Note: Let 21,...,z, be independent standard normal (with mean 0 and variance 1) and x? (v)

random variables. We define a x? (v) random variable as >_._, z7.

Expanding the denominator, we can rewrite it as follows and simplify:

s{b} (5 T e?) (X'X),,

o{bi} 02 (X'X) !
n e;\2
_ X (5)
n—p

Using methods that are beyond the scope of this class, the numerator Y .-, (61 )2 corresponds to the sum of

n — p independent standard normal random variables. Accordingly, ;{{b’; }}: is equal to the square root of a

x? (n — p) random variable divided by its degrees of freedom.

Now that we have decomposed l;’“{_bff into the ratio of a standard normal random variable b’“{_bﬁf and the

square root of a x? (n — p) random variable Y . | (;) divided by its degrees of freedom, one question

remains. Are ’“{bﬁ" and > I, (e’) independent?

They are, but it’s not 0bv1ous' The easiest way to show this is to recognize that k{b’g]’f only depends on the
data through b = (X X) X'Y and Y, (;L) only depends on the data through e.

The covariance of b and e can be computed using linear algebra.
o{e,b} = E{eb'} — E{e} E{b}
~e{(1.-x (X’X)’1 X')ev'X (X'X) '} - 08

- (L -x(x'x)"'x’ E{eY}X (x'x)™"

= (L - x (X'x)7' X) (*1,) X (X'Xx) "

= o? (X ( ) X
= (X (x'x)7 - x (X'X) ") =o.

This allows us to conclude that b and e are uncorrelated, and because b and e are also both normal under
the normal errors linear regression model, we can conclude that they are independent as well. Accordingly,

Z“{bf}’f and Y1, (%)2 are independent.

Note: As v — oo, a t distribution with v degrees of freedom becomes indistinguishable from a
normal distribution with mean 0 and variance 1, often called a standard normal distribution. It is
common practice to use the normal distribution in the place of the ¢ distribution when v > 30.

X'X X) X'X (x'x)7")
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Example 3: Consider the same data, and once again imagine that we magically knew that the

true values By = 62, f1

simulate values of =51
s{b1}

= 3.5, and 02 = 2,500 (this would not happen in real life). We can
under this model. Again, the sampling distribution describes the

distribution of the simulated values.

# Create a vector where we'll record corresponding
# studentized bl estimates
sbls <- numeric(nsim)

for (i in 1:nsim) {
# Simulate errors
epsilon <- rnorm(n, mean = 0, sd = sqrt(sigma.sq))
# Simulate response
Y <- XY*%beta + epsilon
# Fit model to simulated data
XtX.inv <- solve(t(X)%*%X)
b <- XtX.invi*lt (X)%*kY
s.sq <- sum((Y - X)%*%b)"2)/(n - 2)
# Save studentized statistic
sbis[i] <- (b[2] - betal[2])/sqrt(s.sq*XtX.inv[2, 2])

# Make a histogram of the simulated wvalues
hist(sbls, xlab = expression(paste(group("(", b[1] - betal1], ")"),
||/n’
s~group("{", b[1], "}"), sep = "")),
freq FALSE, main = "",
ylim = c(0, 0.5))
sblvals <- seq(-5, 5, length.out = 1000)
# Add the t density for the sampling distribution to compare
lines(sblvals, dt(sblvals, df = n - 2),
col = "blue")
# Add a standard normal density for comparison
lines(sblvals, dnorm(sbivals, mean = 0, sd = 1),
col = "red")
legend("topleft", col = c("blue", "red"),
legend = c(expression(t[n-2]), "Standard Normal"),
1ty = 1, bty = "n")
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Figure 3: Example 3



Using the studentized statistic, we can to ask if the true value of 5 is equal to some specific number, which
we’'ll call ¢, without needing to know o2 or accordingly o2 {b;.}. The natural thing to do would be to compare

f}:b; i to the sampling distribution of ffb; i when [y = c¢. Conveniently if 8y = ¢, the sampling distribution
of ;’f;k i doesn’t depend on ¢ or any other unknown parameters!! It is a ¢ distribution with n — p degrees of
freedom.

Example j: Consider the same data. What if we want to ask if 1 = 07 It would make sense to

compare ffb: % = {I’bll} to the sampling distribution of - {bbll} when ;1 = 0.

# Extract response
Y <- data$yY
# Compute least squares estimate
b < XtX.invt (X)%xhY
bl <- b[2]
s.sq <- sum((Y - X%*%b)"2)/(n - 2)
s.bl <- sqrt(s.sg*XtX.inv[2, 2])
# Plot the sampling distribution of b_1/s{b_1} if \beta_1 = 0
sblvals <- seq(-15, 15, length.out = 1000)
# Add the mormal density for the sampling distribution to compare
plot(sbivals, dt(blvals, n - 2),
xlab = expression(paste(b[1],
ll/ll’
s~group("{", b[1], "}"), sep = "")),
col = "blue", type = "1", ylab = "Density")
abline(v = bl/s.bl, 1ty = 2, col = "red")
legend("topleft", 1ty = 2, col = "red",
legend = expression(paste("Observed ", b[1],
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Figure 4: Example 4

We can see that the observed value of S{lel} is very extreme when compared to the sampling

distribution of - {bljl} when 31 = 0. This suggests that the true value of 37 is unlikely to be 0.



