Notes 9

Maryclare Griffin

$$
3/23/2023
$$

These notes are based on Chapters 2 and 6 of KNNL.

From now on, we will assume the **normal error linear regression model** for a dependent variable or response *Y* and independent variables, predictors, or covariates $X_1, \ldots X_{p-1}$ is defined as:

$$
\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}
$$

where:

\n- The elements of
$$
\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix}
$$
 are parameters
\n- The elements of the $n \times p$ matrix $\mathbf{X} = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \dots & X_{2,p-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{n,p-1} \end{pmatrix}$ are known constants $\left(\begin{array}{c} \epsilon_1 \\ \end{array} \right)$
\n

• $\epsilon = \begin{pmatrix} \epsilon_2 \\ \vdots \end{pmatrix}$. . . $\begin{pmatrix} \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$ is a random error term elements that are ϵ_i that are independent and normally distributed ϵ_n

with mean $E\{\epsilon_i\} = 0$ and variance $\sigma^2 \{\epsilon_i\} = \sigma^2$.

Under the **normal error linear regression model**, we have shown that:

- $\mathbf{b} = (X'X)^{-1}X'Y$ is the least squares estimator of β
- *b* is also the maximum likelihood estimator for *β*
- $E\{\boldsymbol{b}\} = \boldsymbol{\beta}$

$$
\bullet \ \sigma^2\left\{\boldsymbol{b}\right\} = \sigma^2\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}
$$

- Letting $E = Y Xb$, $s^2 = \frac{1}{n-p} \sum_{i=1}^n e_i^2$ is unbiased for σ^2
- An estimator of $\sigma^2 {\bf{b}} = \sigma^2 (X'X)^{-1}$ is $s^2 {\bf{b}} = s^2 (X'X)^{-1}$

Note: If *Z* is a $p \times 1$ vector of independent normal random variables with $p \times 1$ mean $E\{Z\} = \mu$ and $p \times p$ variance

$$
\sigma^2 {\mathbf{Z}} = \mathbf{\Sigma} = \left(\begin{array}{cccc} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_p^2 \end{array} \right)
$$

and *A* is a fixed $p \times p$ matrix, then $V = AZ$ is a **multivariate normal** random variable with mean $E\{V\} = A\mu$ and variance $\sigma^2\{V\} = A\Sigma A'$.

It follows that *b* is a multivariate normal random variable with mean $E\{b\} = \beta$ and variance $\sigma^2\{b\} =$ $\sigma^2 (X'X)^{-1}$. What if we want to talk about the distribution of an element of *b*, *b_k*?

Note: If *Z* is a $p \times 1$ multivariate normal random variable with $p \times 1$ mean $E\{Z\} = \mu$ and $p \times p$ variance

$$
\sigma^2 \left\{ \mathbf{Z} \right\} = \mathbf{\Sigma} = \left(\begin{array}{cccc} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_p^2 \end{array} \right)
$$

then each element Z_k is a (univariate) normal random variable with mean $E\{Z_k\} = \mu_k$ and variance σ^2 { Z_k } = σ_k^2 .

Accordingly, each element b_k of **b** is a normal random variable with mean $E\{b_k\} = \beta_k$ and variance σ^2 { b_k } = σ^2 ($X'X$) $_{kk}^{-1}$, where $(X'X)^{-1}$ refers to the *k*-th diagonal element of $(X'X)^{-1}$ in row *k* and column *k*.

We will refer to the normal distribution with mean $E\{b_k\} = \beta_k$ and variance $\sigma^2\{b_k\} = \sigma^2\left(\mathbf{X}'\mathbf{X}\right)_{kk}^{-1}$ as the **sampling distribution** of *bk*.

Example 1: Consider data from a company that manufactures refrigeration equipment, called the Toluca company. They produce refrigerator parts in lots of different sizes, and the amount of time it takes to produce a lot of refrigerator parts depends on the number of parts in the lot and several other variable factors. Let *X* be the number of refrigerator plots in a lot, and let *Y* refer to the amount of time it takes to produce a size of lot *X*. Imagine that we magically knew that the true values $\beta_0 = 62$, $\beta_1 = 3.5$, and $\sigma^2 = 2{,}500$ (this would not happen in real life). We can simulate values of b_1 under this model. The **sampling distribution** describes the distribution of the simulated values.

```
load("~/Dropbox/Teaching/STAT525/Spring2023/bookdata/toluca.RData")
```

```
# Extract number of observations
n <- nrow(data)
# Construct the design matrix
X \leftarrow cbind(rep(1, n), data$X)
# Set true values
beta <-c(62, 3.5)sigma.sq <- 2500
# Decide how many simulated datasets we want to create
nsim <- 10000
# Create a vector where we'll record corresponding b1 estimates
b1s <- numeric(nsim)
# To ensure that we obtain the same results every time we run this
# code, we need to set a seed. You can pick any number - I have picked 100.
```

```
set.seed(100)
for (i in 1:nsim) {
  # Simulate errors
  epsilon \leq rnorm(n, mean = 0, sd = sqrt(sigma.sq))
  # Simulate response
  Y <- X%*%beta + epsilon
  # Fit model to simulated data
  XtX.inv \leq solve(t(X),\mathcal{C},\mathcal{C})b <- XtX.inv%*%t(X)%*%Y
  # Save coefficient
  b1s[i] <- b[2]
}
# Make a histogram of the simulated values
hist(b1s, xlab = expression(b[1]), freq = FALSE, main = "")
b1vals \leftarrow seq(2, 5, length.out = 1000)
# Add the normal density for the sampling distribution to compare
lines(b1vals, dnorm(b1vals, mean = beta[2], sd = sqrt(sigma.sq*XtX.inv[2, 2])),
      col = "blue")
```


Figure 1: Example 1

In practice, we won't know the true *β*. However, we might want to ask questions about what the true value of β_k might be. For example, we might want to ask if the true value of β_k is equal to some specific number, which we'll call *c*. A natural thing to do would be to compare $b_k - c$ to the sampling distribution when $\beta_k = c$. Conveniently if $\beta_k = c$, the **sampling distribution** of $b_k - c$ doesn't depend on *c* at all! It is a normal distribution with mean 0 and variance σ^2 {*b_k*}.

Example 2: Consider the same data. Imagine that we magically knew the true value $\sigma^2 = 2{,}500$ (this would not happen in real life). What if we want to ask if $\beta_1 = 0$? It would make sense to compare $b_1 - 0 = b_1$ to the sampling distribution of b_1 when $\beta_1 = 0$.

```
# Extract response
Y \leftarrow data $Y# Compute least squares estimate
b \leq XtX.inv%*%t(X)%*%Y
# Plot the sampling distribution of b_1 if \beta_1 = 0
b1vals \leftarrow seq(-5, 5, length.out = 1000)
# Add the normal density for the sampling distribution to compare
plot(b1vals, dnorm(b1vals, mean = 0, sd = sqrt(sigma.sq*XtX.inv[2, 2])),
      col = "blue", type = "1",xlab = expression(b[1]), ylab = "Density")
abline(v = b[2], lty = 2, col = "red")legend("topleft", lty = 2, col = "red",legend = expression(paste("Observed ", b[1], sep = "")),
       bty = "n")
```


Figure 2: Example 2

We can see that the observed value of b_1 is very extreme when compared to the sampling distribution of b_1 when $\beta_1 = 0$. This suggests that the true value of β_1 is unlikely to be 0. However, we had to pretend that we knew σ^2 and accordingly, σ^2 { b_1 } to reach this conclusion. This is not realistic in practice.

This is really useful, but we can't quite make use of it in practice because we won't know $\sigma^2\{b_k\}$. This leads us to define another quantity if we want to ask questions about b_k ,

$$
\frac{b_k - \beta_k}{s \{b_k\}}.
$$

This quantity is an example of a **studentized statistic**. Importantly, its sampling distribution depends on neither β_k or σ^2 { b_k }. In fact, the sampling distribution of $\frac{b_k - \beta_k}{s\{b_k\}}$ is a *t* distribution with $n - p$ degrees of freedom under the normal errors regression model!

To understand why $\frac{b_k-\beta_k}{s\{b_k\}}$ is distributed according to a *t* distribution under the normal errors regression model, we will first revisit the definition of a *t* random variable.

Note: Let *z* and *v* be independent standard normal (with mean 0 and variance 1) and $\chi^2(\nu)$ random variables. We define a *t* random variable as $\frac{z}{\sqrt{\frac{v}{\nu}}}$.

We can recognize the standard normal part of $\frac{b_k-\beta_k}{s\{b_k\}}$ by dividing the numerator and denominator by $\sigma\{b_k\}$:

$$
\frac{b_k - \beta_k}{s \left\{b_k\right\}} = \frac{\frac{b_k - \beta_k}{\sigma \left\{b_k\right\}}}{\frac{s \left\{b_k\right\}}{\sigma \left\{b_k\right\}}}
$$

The numerator $\frac{b_k-\beta_k}{\sigma\{b_k\}}$ is a normal random variable with mean 0 and variance 1, i.e. a standard normal random variable. What about the denominator, $\frac{s\{b_k\}}{\sigma\{b_k\}}$? Is it the square root of a $\chi^2(\nu)$ random variable that is independent of the numerator, divided by *ν*?

Note: Let z_1, \ldots, z_ν be independent standard normal (with mean 0 and variance 1) and $\chi^2(\nu)$ random variables. We define a $\chi^2(\nu)$ random variable as $\sum_{i=1}^{\nu} z_i^2$.

Expanding the denominator, we can rewrite it as follows and simplify:

$$
\frac{s\left\{b_k\right\}}{\sigma\left\{b_k\right\}} = \sqrt{\frac{\left(\frac{1}{n-p}\sum_{i=1}^n e_i^2\right)\left(\boldsymbol{X}'\boldsymbol{X}\right)_{kk}^{-1}}{\sigma^2\left(\boldsymbol{X}'\boldsymbol{X}\right)_{kk}^{-1}}}
$$
\n
$$
= \sqrt{\frac{\sum_{i=1}^n \left(\frac{e_i}{\sigma}\right)^2}{n-p}}
$$

Using methods that are beyond the scope of this class, the numerator $\sum_{i=1}^{n} \left(\frac{e_i}{\sigma}\right)^2$ corresponds to the sum of *n* − *p* independent standard normal random variables. Accordingly, $\frac{s\{b_k\}}{\sigma\{b_k\}}$ is equal to the square root of a χ^2 (*n* − *p*) random variable divided by its degrees of freedom.

Now that we have decomposed $\frac{b_k-\beta_k}{\sigma\{b_k\}}$ into the ratio of a standard normal random variable $\frac{b_k-\beta_k}{\sigma\{b_k\}}$ and the square root of a $\chi^2(n-p)$ random variable $\sum_{i=1}^n \left(\frac{e_i}{\sigma}\right)^2$ divided by its degrees of freedom, one question remains. Are $\frac{b_k - \beta_k}{\sigma \{b_k\}}$ and $\sum_{i=1}^n \left(\frac{e_i}{\sigma}\right)^2$ independent?

They are, but it's not obvious! The easiest way to show this is to recognize that $\frac{b_k-\beta_k}{\sigma\{b_k\}}$ only depends on the data through $\boldsymbol{b} = \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\boldsymbol{X}'\boldsymbol{Y}$ and $\sum_{i=1}^{n} \left(\frac{e_i}{\sigma}\right)^2$ only depends on the data through e .

The covariance of **b** and **e** can be computed using linear algebra.

$$
\sigma\{e,b\} = E\{eb'\} - E\{e\} E\{b\}'
$$

\n
$$
= E\left\{ \left(\mathbf{I}_n - \mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{X}' \right) \mathbf{\epsilon} \mathbf{Y}' \mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1} \right\} - 0\beta'
$$

\n
$$
= \left(\mathbf{I}_n - \mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{X}' \right) E\{ \mathbf{\epsilon} \mathbf{Y}' \} \mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1}
$$

\n
$$
= \left(\mathbf{I}_n - \mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{X}' \right) \left(\sigma^2 \mathbf{I}_n \right) \mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1}
$$

\n
$$
= \sigma^2 \left(\mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1} - \mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{X}'\mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1} \right)
$$

\n
$$
= \sigma^2 \left(\mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1} - \mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1} \right) = 0.
$$

This allows us to conclude that *b* and *e* are uncorrelated, and because *b* and *e* are also both normal under the normal errors linear regression model, we can conclude that they are independent as well. Accordingly, $\frac{b_k - \beta_k}{\sigma \{b_k\}}$ and $\sum_{i=1}^n \left(\frac{e_i}{\sigma}\right)^2$ are independent.

Note: As $\nu \to \infty$, a *t* distribution with ν degrees of freedom becomes indistinguishable from a normal distribution with mean 0 and variance 1, often called a standard normal distribution. It is common practice to use the normal distribution in the place of the *t* distribution when $\nu \geq 30$.

Example 3: Consider the same data, and once again imagine that we magically knew that the true values $\beta_0 = 62$, $\beta_1 = 3.5$, and $\sigma^2 = 2{,}500$ (this would not happen in real life). We can simulate values of $\frac{b_1 - \beta_1}{s\{b_1\}}$ under this model. Again, the **sampling distribution** describes the distribution of the simulated values.

```
# Create a vector where we'll record corresponding
# studentized b1 estimates
sb1s <- numeric(nsim)
for (i in 1:nsim) {
  # Simulate errors
  epsilon \leq rnorm(n, mean = 0, sd = sqrt(sigma.sq))
  # Simulate response
  Y \leftarrow X\% * \%beta + epsilon
  # Fit model to simulated data
  XtX.inv \leq solve(t(X),\mathcal{C},\mathcal{C})b <- XtX.inv%*%t(X)%*%Y
  s.sq <- sum((Y - X%*%b)^2)/(n - 2)
  # Save studentized statistic
  sbls[i] <- (b[2] - beta[2]) / sqrt(s.sq*XtX.inv[2, 2])}
# Make a histogram of the simulated values
hist(sb1s, xlab = expression(paste(group("(", b[1] - beta[1], ")"),
                                     "/",
                                     s~group("{", b[1], "}"), sep = ""),
     freq = FALSE, main = "",ylim = c(0, 0.5)sb1vals \leftarrow seq(-5, 5, length.out = 1000)
# Add the t density for the sampling distribution to compare
lines(sb1vals, dt(sb1vals, df = n - 2),
      col = "blue")# Add a standard normal density for comparison
lines(sb1vals, dnorm(sb1vals, mean = 0, sd = 1),
      col = "red")legend("topleft", col = c("blue", "red"),
       legend = c(expression(t[n-2]), "Standard Normal"),
       lty = 1, bty = "n")
```


Figure 3: Example 3

Using the studentized statistic, we can to ask if the true value of β_k is equal to some specific number, which we'll call *c*, without needing to know σ^2 or accordingly $\sigma^2 \{b_k\}$. The natural thing to do would be to compare $\frac{b_k-c}{s\{b_k\}}$ to the sampling distribution of $\frac{b_k-c}{s\{b_k\}}$ when $\beta_k = c$. Conveniently if $\beta_k = c$, the **sampling distribution** of $\frac{b_k-c}{s\{b_k\}}$ doesn't depend on *c* or any other unknown parameters!! It is a *t* distribution with *n* − *p* degrees of freedom.

```
Example 4: Consider the same data. What if we want to ask if \beta_1 = 0? It would make sense to
      compare \frac{b_1 - 0}{s\{b_1\}} = \frac{b_1}{s\{b_1\}} to the sampling distribution of \frac{b_1}{s\{b_1\}} when \beta_1 = 0.
# Extract response
Y \leftarrow data $Y# Compute least squares estimate
b \leq XtX.inv%*%t(X)%*%Y
b1 \leftarrow b[2]s.sq <- sum((Y - X\frac{1}{2}\frac{1}{2})/(n - 2)s.b1 \leftarrow sqrt(s.sq*Xtx.inv[2, 2])# Plot the sampling distribution of b_1/s{b_1} if \beta_1 = 0
sb1vals \leftarrow seq(-15, 15, length.out = 1000)
# Add the normal density for the sampling distribution to compare
plot(sb1vals, dt(b1vals, n - 2),
      xlab = expression(paste(b[1],
                                          "/",
                                          s~group("{", b[1], "}"), sep = ""),
       col = "blue", type = "1", ylab = "Density")abline(v = b1/s.b1, lty = 2, col = "red")legend("topleft", lty = 2, col = "red",
        legend = expression(paste("Observed ", b[1],
                                        "/",
                                        s \text{-} \text{group}("{\text{-}}", b[1], "}"), sep = "")),
        btv = "n")
```


Figure 4: Example 4

We can see that the observed value of $\frac{b_1}{s\{b_1\}}$ is very extreme when compared to the sampling distribution of $\frac{b_1}{s\{b_1\}}$ when $\beta_1 = 0$. This suggests that the true value of β_1 is unlikely to be 0.