
Introduction to Coding, IDE, and Quarto



Why are we coding?

To actually make use of what you learn in your statistics classes,
you need to:

▶ Read in, store, manipulate, transform, subset, summarize, and
visualize data

▶ Not just numeric data, but also characters and strings
▶ Use and write your own algorithms to fit models to data

▶ Assess how long applying methods to data might take
▶ Use and write functions that facilitate generalization

▶ Simulate random variables

Keeping in mind, any job you do that involves data analysis
will require you to explain what you have done to people who
know less about the data and statistical methods than you
do.



Why are we coding in R?

▶ Compared to Matlab, SAS, and Stata, it’s free!
▶ Compared to Python it has:

▶ A maintained, central repository of statistical software
▶ A well developed set of data cleaning, manipulation, and

visualization functions that are popular for their readability



Why RStudio?

Lets you simultaneously view:
▶ Your code files (where you keep a record of your code that

can reproduce what you have done)
▶ The console (where the code runs)
▶ Plots
▶ Help files

Bonus: Gives you some point and click buttons that can help when
you’re stuck.



Why Quarto?

It makes it easier for you to produce reproducible summaries of
data that can be understood more easily by others and future you
(who sometimes understands less about what you did than others).



Why are we compiling to .qmd to .pdf?

▶ Standardized presentation
▶ Well integrated with LaTeX, which facilitates integrating bits

of math into the text



What will we do today?

▶ Make a plot
▶ Make a table
▶ Reference a value from R in our presentation



Plotting a Simple Function

curve(log)

curve is a function that takes another function, here log, as its
first argument, and creates a plot of the function that as been
provided.



Plotting a Simple Function
curve(log)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

x

lo
g(

x)



Improving Legibility
curve(log, cex.lab = 1.5, cex.axis = 1.5)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

x

lo
g(

x)



Improving Legibility

curve(log, cex.lab = 1.5, cex.axis = 1.5)

cex.lab and cex.axis are arguments to the curve function.
They are a specific type of argument that isn’t always described in
a help file because they can be used for a broad class of functions.
Specifically, they are graphical parameters.



Default Arguments

When we first called the curve command by typing curve(log),
we didn’t specify cex.lab and cex.axis. But we still got a plot!
How?

Arguments for functions have defaults, which are what is assumed
if no value is provided.

The curve function has many other arguments that we have not
specified, e.g. from and to.



Changing the Domain
curve(log, from = 0, to = 2,

cex.lab = 1.5, cex.axis = 1.5)

0.0 0.5 1.0 1.5 2.0

−
4

−
3

−
2

−
1

0

x

lo
g(

x)



How does curve work?
The curve function works by:

▶ Defining a sequence of values for the 𝑥-axis that are uniformly
spaced between a minimum value and a maximum value

x <- seq(0, 1, length.out = 100)

▶ Evaluating a provided function at the sequence of 𝑥-values
that have been constructed to obtain a set of values for the
𝑦-axis

y <- log(x)

▶ Creating a curve by connecting the sequence of points
corresponding to the values for the 𝑥- and 𝑦-axis as described
in the previous steps

plot(x, y, type = "l", xlab = "x", ylab = "log(x)",
cex.lab = 1.5, cex.axis = 1.5)



How does curve work?
plot(x, y, type = "l", xlab = "x", ylab = "log(x)",

cex.lab = 1.5, cex.axis = 1.5)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

x

lo
g(

x)



Backing Up
plot(x, y)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

x

y



Creating a Variable

The first thing we did was create a variable, x!
x <- seq(0, 1, length.out = 100)

We call <- the assignment operator. It assigns the variable x to
refer to the output of a function, seq(0, 1, length.out =
100).

It can be tempting to replace <- with =. Sometimes this will work
and it can seem more parsimonious. Because it does not always
work, sticking with <- is recommended. Type help(assignOps)
into the console to learn more if you are curious.



Constructing an Equally Spaced Sequence

x <- seq(0, 1, length.out = 100)

The seq function with first argument 0, second argument 1, and
length.out = 100 creates a vector with 100 elements, where
the value of the 𝑘-th element is 𝑘/100.

It creates an evenly spaced sequence of length.out numbers
between the first argument and the second argument.

Note that if an argument isn’t named, then the order it appears in
determines what it corresponds to.



What is a vector???

str(x)

num [1:100] 0 0.0101 0.0202 0.0303 0.0404 ...



Applying a Function to a Vector

R has many built in basic math functions that, when applied to a
vector, apply the function elementwise and return a vector.
y <- log(x)

Here, the log function returns a new vector obtained by taking
each element of 𝑥 and computing its logarithm.
str(y)

num [1:100] -Inf -4.6 -3.9 -3.5 -3.21 ...



Using plot to Create a Plot
plot(x, y)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

x

y



Connecting Points into a Line
plot(x, y, type = "l")

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

x

y



Changing Axis Labels
plot(x, y, type = "l", xlab = "x", ylab = "log(x)")

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

x

lo
g(

x)



Making It Legible
plot(x, y, type = "l", xlab = "x", ylab = "log(x)",

cex.lab = 1.5, cex.axis = 1.5)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

x

lo
g(

x)



Comparing to curve
plot(x, y, type = "l", xlab = "x", ylab = "log(x)",

cex.lab = 1.5, cex.axis = 1.5, lwd = 4)
curve(log(x), add = TRUE, col = "red", lty = 2, lwd = 4)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

x

lo
g(

x)



Comparing to curve
curve(log(x), col = "red",

cex.lab = 1.5, cex.axis = 1.5, lwd = 4)
lines(x, y, type = "l", lty = 2, lwd = 4)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

x

lo
g(

x)



Adding a Legend

curve(log(x), col = "red",
cex.lab = 1.5, cex.axis = 1.5, lwd = 4)

lines(x, y, type = "l", lty = 2, lwd = 4)
legend("bottomright",

lty = c(1, 2),
lwd = 4, col = c("red", "black"),
legend = c("curve", "lines"), cex = 1.5)

Notes:
▶ The default line type is a solid line, which is lty = 1
▶ c stands for concatenate. It is a function that joins

consecutive elements together as a vector



Adding a Legend

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

x

lo
g(

x)

curve
lines



Making A More Complicated Plot
plot(x, 2*y^2 + exp(x)/3, type = "l", xlab = "x",

ylab = "2*log(x)^2 + exp(x)/3",
cex.lab = 1.5, cex.axis = 1.5)

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

x

2*
lo

g(
x)

^2
 +

 e
xp

(x
)/

3



Making A More Complicated Plot
curve(log(x, base = 2), from = 0, to = 2,

cex.lab = 1.5, cex.axis = 1.5)

0.0 0.5 1.0 1.5 2.0

−
5

−
4

−
3

−
2

−
1

0
1

x

lo
g(

x,
 b

as
e 

=
 2

)



Making a Table

Making a table starts with storing a table. In R, tables are stored
as matrices, arrays, or data frames. We’ll talk about them in detail
later. For now, we’ll use a matrix.
Y <- matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2)

str(Y)

num [1:2, 1:2] 1 2 3 4
Y

[,1] [,2]
[1,] 1 3
[2,] 2 4



Making a Table

colnames(Y) <- c("Column 1", "Column 2")
row.names(Y) <- c("Row 1", "Row 2")

knitr::kable(Y)

Column 1 Column 2
Row 1 1 3
Row 2 2 4



Referencing a Value from R

We can reference individual elements of an matrix by using
brackets and specifying the desired row and column, e.g. Y[1, 1]
will return the element in the first row and first column of Y.

Based on what we defined earlier, 𝑌11 = 1, 𝑌12 = 3, 𝑌21 = 2, and
𝑌22 = 4.

Note - these values were directly pulled from R, look at the .qmd
file associated with this .pdf to see how!



Takeaways

Every plot you make should be:
▶ Legible
▶ Self-contained

Every table you make should be:
▶ Formatted, not just printed R output

Avoid copying and pasting results whereever possible!


