Accessing Data

Datasets Available in Base R

Some datasets are easily available in R and can be accessed with
the data function.

data(rivers)
rivers[1:5]

[1] 735 320 325 392 524

We can get a list of all available datasets by entering data() into
the console.

Note: Base R refers to R with no packages loaded.

Using the data Function

When we first data(rivers), R creates one or more objects that
have value <Promise>.

Once we have actually used the objects, the contents become
available in the environment.

Try it out to see!

data Examples

P islands
P volcano
P WorldPhones

What types of objects are contained in this data?

The data Function Can Create Multiple Objects

How many and what types of objects are contained in the euro
data?

The Data Frame

data(stackloss)

str(stackloss)

'data.frame': 21 obs. of 4 variables:

$ Air.Flow : num 80 80 75 62 62 62 62 62 58 58 ...
$ Water.Temp: num 27 27 25 24 22 23 24 24 23 18 ...
$ Acid.Conc.: num 89 88 90 87 87 87 93 93 87 80 ...
$ stack.loss: num 42 37 37 28 18 18 19 20 15 14 ...

str(stack.x)

num [1:21, 1:3] 80 80 75 62 62 62 62 62 58 58 ...
- attr(*x, "dimnames")=List of 2
..$: NULL
..$: chr [1:3] "Air.Flow" "Water.Temp" "Acid.Conc."

str(stack.loss)

num [1:21] 42 37 37 28 18 18 19 20 15 14 ...

Data Frames are Like Matrices

For the data frame stackloss:

VVVVVYY

Find number of rows

Find number of columns

Find column means

Find column standard deviations
Extract the first 3 columns
Extract the last row

Data Frames are Not Like Matrices

We cannot do linear algebra on data frames without transforming
them.

rep(1/nrow(stackloss), nrow(stackloss))’*%stackloss

Data frames can contain columns of different modes.

Columns of data frames can be accessed using $.

stackloss$stack.loss

Using $ creates a vector - we can confirm.

all.equal(stackloss$stack.loss, stack.loss)

Can we turn a data frame back into a matrix?

Sometimes!

rep(1/nrow(stackloss), nrow(stackloss))%*%
as.matrix(stackloss)

Air.Flow Water.Temp Acid.Conc. stack.loss
[1,] 60.42857 21.09524 86.28571 17.52381

This will only work when the data frame does not contain
characters or factors (which are a special way of storing characters
that we're about to learn about).

How do we make a data frame?

We can construct a data frame by combining matrices with n rows
and vectors with n elements.

sl <- data.frame(stack.x, stack.loss)

We can confirm they are the same!

all.equal(sl, stackloss)

Data Frames with Non-Numeric Data

Again, data frames can contain columns of different modes.

data(chickwts)

head(chickwts)

weight feed
179 horsebean
160 horsebean
136 horsebean
227 horsebean
217 horsebean
168 horsebean

o O WN -

You can also look at a data frame as if it is a spreadsheet in R by
using the View function. Try it!

View(chickwts)

Factors

What appears to be a character vector is actually stored as a

“factor.”

str(chickwts)

'data.frame': 71 obs. of 2 variables:

$ weight: num 179 160 136 227 217 168 108 124 143 140 ..
$ feed : Factor w/ 6 levels "casein",'"horsebean",..: 2 2

We will talk about this more in a bit.

Datasets Available in Packages

Different packages contain additional datasets, often for use as a
demonstration of certain functions.

There are also some R packages that exist for the sole purpose of
helping you load in specific datasets from online sources,
e.g. yahoofinancer for downloading Yahoo Finance data.

Loading in Datasets

In real life, we probably want to load in data that's not already
available in base R or some R package.

The most common format is a .csv file, where .csv stands for

“commma separated value.” These are often directly available or
indirectly available, e.g. as an option for saving an spreadsheet in
Excel.

The downside of .csv files is that they can be a bit big - we'll talk
about dealing with big files soon.

Downloading a .csv file

Let's download files from a recent Evolution paper that have been
made available:
https://datadryad.org/dataset/doi:10.5061/dryad.rs610.

The paper is available here, if you're curious:
https://academic.oup.com/evolut/article/69/10/2662/6851963.

https://datadryad.org/dataset/doi:10.5061/dryad.rs610
https://academic.oup.com/evolut/article/69/10/2662/6851963

Filepaths

In order to read in data, you need to figure out where the data is.

In R, you can identify the current file path using getwd Q).
getwd ()

You can see what files are there using 1list.files().

list.files()

You can also set a new working directory using the setwd function
and providing a file path.

Filepath Help

If you're having a hard time finding your file path, you can load in
a .csv file by going to the “File” menu, navigating down to
“Import Dataset” and clicking “From Text (base).” Then find your
.csv file.

Once you do this, a line of code that starts with read.csv will get
sent to your console. Save it! It will include the path to your file.

Reading in a .csv file

The read.csv function reads a .csv file into R, creating a data frame.

data <- read.csv("~/Downloads/seawater.archive.data.csv")

str(data)

'data.frame': 63 obs. of 9 variables:

$ Plate cint 1111112222 ...

$ Well.Name : chr "B2" "C2" "D2" "E2"

$ Line : chr "31" "22" "B2" "43"

$ Concentration : chr '"seawater" "seawater" "seawater" "seawate
$ Replicate :int 1111112222 ...

$ History : chr '"salt" "salt" "dark" "dark"

$ initial.cell.density: num 41748 54755 15594 224336 15070 ...
$ final.cell.density : num 1119 10315 874 3077 455 ...

$ rate.increase :num -1.688 0.262 -0.95 -2.358 -1.57 ...

Characters versus Factors

data <- read.csv("~/Downloads/seawater.archive.data.csv",
stringsAsFactors = TRUE)

str(data)

'data.frame': 63 obs.

“

B P hH hH PH PH P B

Plate
Well.Name
Line
Concentration
Replicate
History

initial.cell.density:
! num

final.cell.density
rate.increase

of 9 variables:

int

int

1111112222 ...

: Factor w/ 1 level "seawater":

1111112222 ...

: Factor w/ 6 levels "B2","C2","D2",..:
: Factor w/ 33 levels "20","21","22", . .:

1234
13 3 26

11111111

: Factor w/ 4 levels "dark",'"marine",..:

3311

num 41748 54755 15594 224336 15070 ...
1119 10315 874 3077 455 ...
-1.57 ...

¢ num

-1.688 0.262 -0.95 -2.358

What the heck is a factor??

Factors are a mode that we haven't talked about yet. They can be
thought of as fancy vectors.

Factors are a way of storing elements as positive integers with each
integer value associated with a character label. The character
labels are called “levels.”

Generally, factors are annoying. However a nice thing about them
is that they can clearly convey the total set of values that a
variable could take on, even if certain values are not observed in
the data. They are also sometimes convenient for plotting,
summarizing, and analyzing data.

An Example of a Factor

The variable History is treated as a level when we specify
stringsAsFactors = TRUE.

levels(data$History)

[1] "dark" "marine" "salt" "wild"

unclass(data$History)

[1] 3311111111331 11111333
[391 113333311111133333121
attr(,"levels")

[1] "dark" "marine" "salt" "wild"
as.numeric(data$History)

[1] 3311111111331 11111333
[39 113333311111133333121

S w

w =

w

N =

Converting a Factor to its Values

levels(data$History) [as.numeric(data$History)]

[1]

(9]
[17]
[25]
[33]
[41]
[49]
[57]

n Salt n
|Idarkll
IIdarkll
I|darkll
IIdarkll
n salt n
IIdarkll
IIdarkH

n Salt n
lldarkll
lldarkll
lldarkll
lldarkll
n Salt n
lldarkll
"marine"

lldarkll
n Salt n
n Salt n
lldarkﬂ
lldarkll
n Salt n
lldarkll
Ildarkll

Ildarkll
n Salt n
n Salt n
Hdarkll
Ildarkll
n Salt n
n Salt n
"wildll

Ildarkll
I'darkll
n Salt n
n Salt n
Ildarkll
n Salt n
n salt n
n Salt n

"dark"
"dark"
"salt"
"salt"
"dark"
"dark"
"salt"
"salt"

Being Careful Converting Factors to Numeric Values

Sometimes, quantities that should be numeric are treated as factors. For
instance, the Seed variable in the Loblolly data.

data(Loblolly)

If we want to convert a factor back to a number, we need to be careful about
how we do it. Just applying as.numeric returns the integers associated with
each level. That's not what we want!

head(as.numeric(Loblolly$Seed))

[1] 10 10 10 10 10 10

We want to make the labels themselves to numbers.
head(as.numeric(levels(Loblolly$Seed)) [as.numeric(Loblolly$Seed)])

[1] 301 301 301 301 301 301

More Importing Data

We will now import some basketball data to give some more
examples.

Go here: https://www.basketball-
reference.com/teams/BOS/2024.html#all_per_minute_stats

Specifically, we'll focus on per 36 minute statistics.
You can download these as an Excel Workbook or a .csv.

Try both approaches and import the data. If you download the
Excel Workbook version, open it up and then save it as a .csv.
Then load it into R. Try it!

https://www.basketball-reference.com/teams/BOS/2024.html#all_per_minute_stats
https://www.basketball-reference.com/teams/BOS/2024.html#all_per_minute_stats

