
Functions

Functions in R

We have seen several examples of existing R functions, and done
some tiny examples of defining our own functions, e.g. in apply or
integrate.
apply(A, 2, function(x) {sum(x)})

integrate(function(x){x*dnorm(x)},
lower = -Inf, upper = Inf)

Functions are key to writing generalizable code. If there’s code
we want to repeatedly apply to very or even just slightly different
data, we want to avoid copying and pasting that code and instead
store the code in a function that can be called again.

Components of A Function

All functions have some “body” or content comprised of lines of
code they call.
apply(A, 2, function(x) {sum(x)})

integrate(function(x){x*dnorm(x)},
lower = -Inf, upper = Inf)

Most functions have inputs.

Some functions have outputs.

Defining a Function

Most functions have names, which come first when defining a
function.

Let’s define a function called emptyfunction.
emptyfunction <- function() {
}

We call this function by typing emptyfunction().

Defining a Function

Now let’s actually define a function that does something.
ex <- function(x) {
x*dnorm(x)

}

This function takes an input x and returns an output
x*dnorm(x).

By default, the function will return the output of the last line of
code it contains.

Output of a Function

Not all functions return output.

What does the variation below return?
ex <- function(x) {
v <- x*dnorm(x)

}

Output of Functions
All of these functions produce the same output.
ex <- function(x) {
x*dnorm(x)

}

ex <- function(x) {
return(x*dnorm(x))

}

ex <- function(x) {
v <- x*dnorm(x)
v

}

ex <- function(x) {
v <- x*dnorm(x)
return(v)

}

Scope of a Function

We just saw an example of a new object being defined within a
function.
ex <- function(x) {
v <- x*dnorm(x)
return(v)

}

Objects defined within a function exist within the function but not
outside of it unless you replace the assignment operators <- or =
with <<-. DON’T DO THIS!!!

This is a very convenient aspect of functions, it can help us keep
our workspace clean by temporarily creating objects as needed and
then throwing them away for us once we’re done with them.

Try it out!

Scope of a Function - Side Effects

A special feature of functions in R is that not only do objects
defined within a function only exist within that function, but also
objects defined within a function do not overwrite objects outside a
function with the same name.
v <- 2
ex <- function(x) {
v <- x*dnorm(x)
return(v)

}
a <- ex(1)

What happens to v after we run a <- ex(1)?

Scope of a Function - Side Effects

To better drive this point home…,
toy <- function(x) {
x <- x/2
return(x)

}
x <- 2
toy(x)

[1] 1
x

[1] 2

Scope of a Function - Looking Out

Objects defined outside of a function exist inside of a function
(providing they are defined before it). This can be dangerous and
is somewhat unusual behavior for a programming language.
z <- 1
ex <- function(x) {
v <- z*dnorm(z)
return(v)

}

Try it out!

How can I tell what is in the scope?
Typing ls() returns a character vector of the names of all objects
that are in scope.
ls()

[1] "a" "ex" "toy" "v" "x" "z"

Note: Functions are objects!
toy <- function(x) {
x <- x/2
print(ls())
return(x)

}

toy(1)

[1] "x"

[1] 0.5

Order Matters

toy <- function(x) {
x <- x/2
return(x)
print(ls())

}

toy(1)

[1] 0.5

Order Matters

toy <- function(x) {
x <- x/2
x
print(ls())

}

toy(1)

[1] "x"

Do we need return?

Practically, not really. It might even slow things down a bit.

For readability, it’s nice. And it does help to ensure that our
functions return what we want them to return.

A Function Can Have Multiple Arguments

In practice, we will often want to allow a function to have multiple
arguments.

For the ex function, we may want to change the mean and
standard deviation of the normal density.
ex <- function(x, mean, sd) {
x*dnorm(x, mean = mean, sd = sd)

}

Try it out!

What happens if we don’t specify mean and sd?

We Can Specify Default Arguments

If some arguments have typical default values, we can specify
those when defining the function.
ex <- function(x, mean = 0, sd = 1) {
x*dnorm(x, mean = mean, sd = sd)

}

If values for the arguments mean or sd are not specified, the
default values 0 or 1 will be used.

Try it out!

What can functions return?

Functions can return any type of object, including a function
(although this is a rare way to use functions, and it is much more
common for functions to return a vector, matrix, or nothing at all).

If we want our function to return multiple objects, even if they are
of the same type, we need to return a list.

We won’t talk about this just yet, but soon!

Making Functions Available

User defined functions are the primary, most useful contents of R
packages.

Examining Others’ Functions
Typing a function name into the console will return code used to
define a function.
library(gnorm)
dgnorm

function (x, mu = 0, alpha = 1, beta = 1, log = FALSE)
{

if (alpha <= 0 | beta <= 0) {
cat("Not defined for negative values of alpha and/or beta.\n")
return(rep(NaN, length(x)))

}
if (!log) {

return(exp(-(abs(x - mu)/alpha)^beta) * beta/(2 * alpha *
gamma(1/beta)))

}
else {

return(-(abs(x - mu)/alpha)^beta + log(beta) - (log(2) +
log(alpha) + log(gamma(1/beta))))

}
}
<bytecode: 0x1212930c8>
<environment: namespace:gnorm>

Activities

Write a function that creates a square AR-1 covariance matrix of
arbitrary size and correlation parameter 𝜌, with elements
𝑐𝑖𝑗 = 𝜌|𝑖−𝑗|.

Write a function that smooths a vector by averaging sequences of
𝑘 points, where 𝑘 is provided by the user.

