
Modes and Data Structures



What is a “mode”?

In R, individual elements (the smallest unit that we store) have a
“mode”, which describes the type of quantity they describe.
Possible modes include:

▶ Integer
▶ Numeric (Floating Point, Double)
▶ Character (String)
▶ Logical (Boolean)
▶ Complex

We usually don’t need to tell R what the mode should be when we
define something. It guesses from what we provide.

We can use the str and typeof functions to learn what the mode
of a variable we have defined is.



Numeric (Floating Point, Double)

x <- 1.1
str(x)

num 1.1
typeof(x)

[1] "double"
mode(x)

[1] "numeric"



Character (String)

x <- "a"
str(x)

chr "a"
typeof(x)

[1] "character"
mode(x)

[1] "character"

Note: Characters can include more than one element, e.g. x <-
"abc".



Logical (Boolean)

x <- TRUE
str(x)

logi TRUE
typeof(x)

[1] "logical"
mode(x)

[1] "logical"

The logical mode can take on values TRUE and FALSE, which can
be abbreviated T and F.

Note: For this reason, naming variables T or F is discouraged.



Integer?

x <- 1
str(x)

num 1
typeof(x)

[1] "double"
mode(x)

[1] "numeric"

If R has to guess whether a number is an integer or a numeric, it
will default to numeric.



Integer!

We actually do need to tell R the mode when we want to define an
integer. A way to do that is to apply the function as.integer to
the integer we provide.
x <- as.integer(1)
str(x)

int 1
typeof(x)

[1] "integer"
mode(x)

[1] "numeric"



Vectors

Vectors are collections of elements that share the same mode.

The length of a vector describes the number of elements in a
vector.

In fact, everything we’ve seen so far was a vector of length 1!
x <- 1
str(x)

num 1



Creating a Vector

We can construct vectors from multiple elements using the c
function, where c stands for concatenate.
x <- c(1, 5, 2)

str(x)

num [1:3] 1 5 2
x

[1] 1 5 2



Determining the Number of Elements in a Vector

The length function, when applied to a vector, returns the
number of elements in a vector.
length(x)

[1] 3



Viewing an Element of a Vector

x[1]

[1] 1
x[2]

[1] 5
x[3]

[1] 2



Viewing Elements of a Vector

x[1:2]

[1] 1 5
x[c(1, 3)]

[1] 1 2
x[-2]

[1] 1 2
x[-c(1, 3)]

[1] 5



Growing a Vector

Unlike some other languages, R allows you to make a vector longer
or make it shorter.
x <- c(x, 4)

x

[1] 1 5 2 4



Shortening a Vector

x <- x[1:3]

x

[1] 1 5 2



Replacing an Element of a Vector

x[2] <- 5.1

x

[1] 1.0 5.1 2.0



Elementwise Assignment of a Vector

We can only assign a value to an individual element of a vector if
the vector exists.

For instance, we have not defined z.

What happens if we type z[1] <- 2 without defining z?



Elementwise Assignment of a Vector

Once a vector has been defined, we can assign a value to any
element of the vector, even if we are assigning a value to an
element of the vector that doesn’t exist yet.
x[4] <- 4

x

[1] 1.0 5.1 2.0 4.0
x[6] <- 30

x

[1] 1.0 5.1 2.0 4.0 NA 30.0



What the heck is NA???

R encodes missing values as NA for all modes.

NA means there should be a value, but there isn’t.
c(1, NA, 3)

[1] 1 NA 3

R has another way of denoting that something is undefined, which
is the value NULL. However, NULL means something different than
NA. NULL means that the element or object does not exist at all.
c(1, NULL, 3)

[1] 1 3



Other Ways to Create a Vector

These create “empty” length 3 vectors.
x <- numeric(3)

x <- vector(length = 3)

x <- rep(NA, 3)

Alternatively, because we can grow vectors in R, initializing a vector
x of a smaller size or assigning x to be NA, or NULL will work.
x <- NA

x <- NULL

x[1] <- 1
x[2] <- 5.1
x[3] <- 2



Looping Over Elements of a Vector

It is common that we may want to apply a function to one element
of a vector at a time.
for (i in 1:length(x)) {
x[i] <- i

}

x

[1] 1 2 3



Math Operations on Numeric Vectors

Many basic mathematical operations, including addition, are
performed elementwise when applied to one or more vectors in R.
x <- c(1, 4)
y <- c(9.2214, 0.12)
x + y

[1] 10.2214 4.1200



Math Operations on Numeric Vectors

Other operations include:
▶ Subtraction -
▶ Multiplication *
▶ Division /
▶ Square rooting sqrt
▶ Exponentiation ^
▶ Rounding round
▶ Absolute value abs
▶ Cumulative sum cumsum



Operations on Vectors - Recycling

y <- y[1]
x + y

[1] 10.2214 13.2214

Although we’re demonstrating recycling with addition, the same
behavior appears in the context of subtraction, multiplication, and
division.

Recycling also comes up when we use logical vectors to subset a
vector.



Subsetting/Filtering Using Logical Vectors

Earlier we saw that we can subset a vector by providing a vector of
indices that we would like to retain, e.g.
x <- c(1, 5, 2)
x[c(1, 3)]

[1] 1 2

x[c(1, 3)] creates a new vector by taking a subset of elements
of the original vector, specifically the 1st and third elements.

We can also subset a vector by providing a logical vector of the
same length, and elements of the original vector that correspond
elements of the logical vector with value TRUE will be retained.
x[c(TRUE, FALSE, TRUE)]

[1] 1 2



Operations on Vectors that Yield Logical Vectors

The ability to subset vectors using logical vectors of the same
length helps us subset vectors according to their values.
Specifically, we have the following functions:

▶ Greater than >
▶ Greater than or equal to >=
▶ Less than <
▶ Less than or equal to <=
▶ Equal to ==
▶ Not equal to !=

x < 5

[1] TRUE FALSE TRUE

Note that these will return NA when applied to NA.



Recycling when Using Logicals to Subset

Recycling comes up in the context of subsetting/filtering a vector
if we subset a vector by a shorter logical vector.

To make sense of the fact that the logical vector is shorter than
the vector it is being used to subset, R will just repeat the logical
vector over and over until it is the same length as the vector it is
being used to subset.
x[TRUE]

[1] 1 5 2
x[c(TRUE, FALSE)]

[1] 1 2



Creating Special Vectors - Repeating

We have now seen recycling twice. What is happening when R
recycles a vector is that it repeats a vector to achieve a certain
length.

This introduces the idea of creating a special vector that repeats
itself.



Creating Special Vectors - Repeating

We can create a repeating vector using the rep function, which
has several arguments. Two determine what should be repeated:

▶ The first argument is the vector that should be repeated
▶ The each argument indicates the number of times each

element of the first argument should be repeated in succession
rep(c("a", "b", "c"))

[1] "a" "b" "c"
rep(c("a", "b", "c"), each = 2)

[1] "a" "a" "b" "b" "c" "c"



Creating Special Vectors - Repeating

Given what should be repeated, determined by the first argument
to rep and a value of each (if provided), either times or
length.out can be specified to determine how many times the
repeating should occur:

▶ The times argument indicates how many times the repeating
should occur

▶ The length.out argument indicates the length of the
repeated vector

rep(c("a", "b", "c"), each = 2, length.out = 2)

[1] "a" "a"
rep(c("a", "b", "c"), each = 2, times = 2)

[1] "a" "a" "b" "b" "c" "c" "a" "a" "b" "b" "c" "c"



Creating Special Vectors - Sequences

Frequently, we may want to create a vector with a special desired
structure. For instance, we may want to make a vector with
elements that are equally spaced from one minimum value up to a
maximum value.

▶ Using : gives a sequence of integers, 1:5 or 0:2
▶ Using seq gives a numeric sequence based on specified

minimum and maximum values and either:
▶ Specification of the number of elements between the minimum

and maximum, length.out
▶ Specification of the difference between consecutive values, by

x <- seq(0, 5, by = 1)
x <- seq(0, 5, length.out = 6)

Do these two commands produce the same x?



Functions Summarizing Numeric Vectors

▶ sum
▶ mean
▶ sd
▶ var
▶ min
▶ max
▶ prod
▶ range

What happens if the vector contains an NA?



Functions Summarizing Numeric Vectors with NA

x <- c(1, 3, NA)

mean(x)

[1] NA
mean(x, na.rm = TRUE)

[1] 2



What is na.rm = TRUE doing?
mean(x, na.rm = TRUE)

[1] 2
x

[1] 1 3 NA
na.omit(x)

[1] 1 3
attr(,"na.action")
[1] 3
attr(,"class")
[1] "omit"
mean(na.omit(x))

[1] 2



What is na.rm = TRUE doing?

mean(x, na.rm = TRUE)

[1] 2
mean(x[!is.na(x)])

[1] 2

The function is.na takes a vector that may contain elements with
value NA and returns a logical/Boolean vector with elements that
are TRUE if the corresponding element of the provided vector is NA
and FALSE otherwise.



Functions Summarizing Logical Vectors

▶ all
▶ any

These functions can behave strangely when applied to logical
vectors that include NA.
any(x == 2)

[1] NA
any(x == 3)

[1] TRUE



Subsetting/Filtering with NA’s
Earlier, we saw examples of subsetting/filtering a vector by
specifying which indices we do or do not want to retain, and
subsetting using logical vectors. There are two nice additional
ways, which automatically deal with NA’s when they are present.
x[x > 1]

[1] 3 NA

which takes a logical vector and returns a vector of integers that
correspond to the indices for which the logical vector is equal to
TRUE
x[which(x > 1)]

[1] 3
which(x > 1)

[1] 2



Subsetting/Filtering with NA’s

subset takes two arguments, an arbitrary vector and a logical
vector of the same length
subset(x, x > 1)

[1] 3

which and subset provide more concise alternatives to another
approach which combines two logical vectors
x[!is.na(x) & x > 1]

[1] 3



Additional Useful Shortcuts

which.max and which.min can be applied to a vector and return
the index of the maximum or minimum value
which.max(x)

[1] 2
which.min(x)

[1] 1



Comparing Vectors

▶ identical takes two vectors and returns a logical that
indicates whether or not the two vectors are identical

▶ all.equal takes two vectors and returns a logical that
indicates whether or not the two vectors are identical but with
a little numerical wiggle room



The ifelse function

ifelse is a function that can be applied to a logical vector and
allows us to specify a pair of vectors that describe what each
element’s value should be depending on whether the logical vector
evaluates to TRUE or FALSE
ifelse(x > 1, "a", "b")

[1] "b" "a" NA
ifelse(x > 1, 1, x)

[1] 1 1 NA



Names for Vectors

R lets us attach a vector of names for elements to each vector,
which can then be used to index elements of a vector
names(x) <- c("first", "second", "third")

x["second"]

second
3



Matrices

Like vectors, matrices are collections of elements that share the
same mode. However, they have two dimensions (rows and
columns) and accordingly, are indexed by pairs of indices.

The dimensions of a matrix describe the number of rows and
columns.



Making a Matrix

Making a matrix is a bit different from making a vector. We
cannot grow a matrix in the same way we can grow a vector - we
will start from a matrix initialized to have the desired dimensions.
A <- matrix(nrow = 3, ncol = 2)

A

[,1] [,2]
[1,] NA NA
[2,] NA NA
[3,] NA NA
A <- matrix(0, nrow = 3, ncol = 2)

A <- matrix(1:(3*2), nrow = 3, ncol = 2)



Indexing Elements of/Subsetting a Matrix

A

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
A[1, 2]

[1] 4
A[1, ]

[1] 1 4
A[, 1]

[1] 1 2 3



Avoiding Conversion to Vector

A[1, , drop = FALSE]

[,1] [,2]
[1,] 1 4
A[, 1, drop = FALSE]

[,1]
[1,] 1
[2,] 2
[3,] 3



Extracting the Dimensions of a Matrix

dim(A)

[1] 3 2
nrow(A)

[1] 3
ncol(A)

[1] 2



Growing a Matrix

We can grow a matrix, but if we do so we need to add entire rows
(rbind) or columns (cbind).
A <- rbind(A, c(0, 0))

A

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
[4,] 0 0



Growing a Matrix

We can grow a matrix, but if we do so we need to add entire rows
(rbind) or columns (cbind).
A <- cbind(A, c(0, 0, 0, 0), c(0, 0, 0, 0))

A

[,1] [,2] [,3] [,4]
[1,] 1 4 0 0
[2,] 2 5 0 0
[3,] 3 6 0 0
[4,] 0 0 0 0



Indexing Diagonals of Matrices
A

[,1] [,2] [,3] [,4]
[1,] 1 4 0 0
[2,] 2 5 0 0
[3,] 3 6 0 0
[4,] 0 0 0 0
diag(A)

[1] 1 5 0 0
diag(A[1:2, ])

[1] 1 5
diag(A[-1, -ncol(A)])

[1] 2 6 0



Making Special Matrices
Another use of the diag function is to create a diagonal matrix.
diag(2)

[,1] [,2]
[1,] 1 0
[2,] 0 1
diag(2, nrow = 2, ncol = 2)

[,1] [,2]
[1,] 2 0
[2,] 0 2
diag(c(1, 2))

[,1] [,2]
[1,] 1 0
[2,] 0 2



Subsetting a Matrix

A

[,1] [,2] [,3] [,4]
[1,] 1 4 0 0
[2,] 2 5 0 0
[3,] 3 6 0 0
[4,] 0 0 0 0
A <- A[1:3, 1:2]



Functions Summarizing Matrices

Matrices are just fancy vectors, and many of the functions we have
discussed for summarizing vectors can be applied to a matrix. The
function will just “flatten” the matrix into a vector first.
max(A)

[1] 6
range(A)

[1] 1 6

The functions sum, mean, sd, var, min, and prod work
equivalently when applied to matrices.



Math for Matrices

Most of the functions that we described for vectors also apply to
matrices.
A + 1

[,1] [,2]
[1,] 2 5
[2,] 3 6
[3,] 4 7

This applies to +, *, /, -, abs, round, sqrt, ^, and will work if we
replace 1 above with another scalar or a matrix with the same
dimensions as A.

What happens if we use mathematical functions like + with a
matrix and a vector of a different size?



Operations on Matrices that Yield Logical Matrices

The following functions we introduced for vectors work for matrices
too, and return matrices:

▶ Greater than >
▶ Greater than or equal to >=
▶ Less than <
▶ Less than or equal to <=
▶ Equal to ==
▶ Not equal to !=
▶ is.na



Coercing a Matrix Back to a Vector

c(A)

[1] 1 2 3 4 5 6
as.numeric(A)

[1] 1 2 3 4 5 6

This is helpful for understanding what some functions do when
applied to matrices.



Identifying Elements of A Matrix that Satisfy a Certain
Condition

which(A > 1)

[1] 2 3 4 5 6
which(A > 1, arr.ind = TRUE)

row col
[1,] 2 1
[2,] 3 1
[3,] 1 2
[4,] 2 2
[5,] 3 2



Subsetting a Matrix with Logical Vectors

As with vectors, we can also subset matrices using logical vectors.
A

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
A[A[, 1] >= 1, A[2, ] < 3]

[1] 1 2 3



Naming Rows/Columns of a Matrix

It can be very handy to give a matrix’s rows and/or columns
names, for easier use.
colnames(A) <- c("alpha", "beta")
row.names(A) <- c("a", "b", "c")

A

alpha beta
a 1 4
b 2 5
c 3 6



Getting Rid of Row/Column Names

A

alpha beta
a 1 4
b 2 5
c 3 6
colnames(A) <- NULL
row.names(A) <- NULL

A

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6



Special Summaries of Rows of a Matrix

▶ rowSums
▶ rowMeans

rowMeans(A)

[1] 2.5 3.5 4.5



Special Summaries of Columns of a Matrix

▶ colSums
▶ colMeans

colSums(A)

[1] 6 15



Summarizing Dimensions of a Matrix More Generally

The apply function allows us to apply functions along dimensions
of a matrix.
colSums(A)

[1] 6 15
apply(A, 2, sum)

[1] 6 15
apply(A, 2, function(x) {sum(x)})

[1] 6 15



Summarizing Dimensions of a Matrix More Generally

The apply function allows us to apply functions along dimensions
of a matrix.
rowSums(A)

[1] 5 7 9
apply(A, 1, sum)

[1] 5 7 9
apply(A, 1, function(x) {sum(x)})

[1] 5 7 9

What happens if we provide both array dimensions to apply,
e.g. apply(A, c(1, 2), sum)?



Special Matrix Functions (Linear Algebra)
Matrix multiplication uses %*%.
A%*%c(1, 2)

[,1]
[1,] 9
[2,] 12
[3,] 15

The t function transposes a matrix.
t(A)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

The functions crossprod and tcrossprod can also be used to
perform matrix multiplication, and sometimes yield speed benefits.



Special Matrix Functions (Linear Algebra)

For any matrix:
▶ svd returns the singular value decomposition

For square matrices:
▶ solve returns the inverse of a matrix
▶ eigen returns an eigendecomposition

For symmetric positive-definite square matrices:
▶ chol returns a cholesky decomposition


