Random Variables

Random Variables in R

R has built in functions for working with several common distributions:

- NormalUniformGamma
- Binomial
- Binomial
- Chi-square
- Poisson
- Multinomial

For a more complete list, type help(Distributions).

Random Variables in R

For every one of these distributions, R has at least 4 functions that

- Compute the density
- Compute the CDF
- Compute the inverse CDF
- Simulate a random variable

Normal Random Variables

- Compute the density dnorm
- Compute the CDF pnorm
- Compute the inverse CDF qnorm
- Simulate a random variable rnorm

Different distributions have a corresponding suffix, e.g. norm for normal, and their density, CDF, inverse CDF, and random variable generation functions can be obtained by combining the appropriate letter - d, p, q, or r - with the corresponding suffix.

Early Random Number Generation

Coins, dice, spinning a cardboard disc

- Tables/books of random numbers based on
 - Experimental data combined with statistical theory
 - Randomly selecting numbers from tables/books of other numbers

Even when these methods work well, they take a lot of effort and require importing sequences of random numbers onto a computer.

Deterministic Random Number Generation

Middle Square Method (MSM):

- Start with a number x with 2a digits and square it to get a number with 4a digits (pad with 0's if needed)
- \blacktriangleright Retain the middle 2a digits of the square
- Iterate
- Digits of transcendental numbers

MSM method can yield sequences that get stuck at $0 \mbox{ or have a}$ short "cycle," try starting from $2500 \mbox{ or starting from any two digit number.$

Digits of transcendental numbers are too expensive to obtain and store and hard to study mathematically.

You can read about what R uses and other options if you type help(RNG).

R uses the "Mersenne-Twister" from 1998!

All of the options start from a specified seed, which is a number that you provide or the computer picks for you based on features of the session.

You need to fix the seed to get replicable results, using set.seed.

set.seed(372132)

All Roads Lead Back to the Uniform

- ► A sequence of positive numbers can be transformed to a distribution on (0,1) by adding a decimal point
- Any random variable can be obtained using uniform variables on (0,1)
- By definition, applying a CDF to identically distributed random variables yields uniform variables on (0, 1) - we can reverse this!

Normal Random Variables from Uniform

u <- runif(100000)

z <- qnorm(u)

hist(z, freq = FALSE)
curve(dnorm, add = TRUE)

Normal Random Variables from Uniform

z

Normal Random Variables from Uniform

We generated standard normal random variables...how do we generate normal random variables with mean μ and variance $\sigma^2?$

Gamma Variables from a Uniform

g <- qgamma(u, 1, 1)

Histogram of g

g

Gamma Variables from a Uniform

```
g <- qgamma(u, 0.0001, 1)
```

table(g == 0)

FALSE TRUE 7144 92856

Sometimes the inversion method for simulating from a distribution can be numerically unstable.

Why is simulation useful?

Simulation studiesApproximating intractable integrals

$$\begin{split} E\left[f\left(z\right)\right] &= \int f(z)p\left(z\right)dz\\ &\approx \sum_{i}f(z_{i}) \end{split}$$

if z_i have density $p(z_i)$.

mean(z)

[1] 0.0007949281

 $mean(z^4)$

[1] 2.997339

Checking our Simulation

3 with absolute error < 5.7e-06