
Strings/Characters

What is a string?

A string is a collection of characters. It can be very helpful to be
able to manipulate strings to make data usable.

Strings via an Example

Let’s consider the Celtics data on my teaching page,
data <-

read.delim("https://.../sportsref_download_5.txt")

This data has 3 character variables:
▶ Player, player name
▶ Pos, player position
▶ Awards, player awards

https://maryclare.github.io/teaching.html

Counting the Number of Characters

The function nchar applied to a string counts the number of
characters.

For example,
nchar("Celtics")

[1] 7

When applied to a vector of strings, nchar counts the number of
characters per element of the vector.
nchar(data$Pos)

[1] 2 2 2 2 2 2 1 1 1 2 2 1 2 2 2 2 2 2 2

Subsetting a String By Character Position

Sometimes we might want to take a substring by extracting the
characters in certain positions, e.g. we may want to extract just
the first character.
substr(data$Pos, 1, 1)

[1] "P" "S" "S" "P" "P" "S" "C" "C" "C" "S" "S" "C" "P" "P" "S" "P" "S" "S" "P"

The first number tells substr the position of the first character to
extract, and the last number tells substr the position of the last
character.
substr(data$Pos, 2, 2)

[1] "F" "G" "F" "G" "G" "F" "" "" "" "F" "F" "" "F" "G" "G" "F" "F" "G" "F"

Note - if a string only has one character, then extracting the
second character returns nothing, "".

Subsetting a String By Character Position

You can pass vectors of starting and ending positions to substr.
For instance, suppose you wanted to extract the last letter of
variable Player for each player.

How would you do it?

Subsetting a String By Character Position

We can create new variables by subsetting, e.g. we might want to
make a new variable based on Pos that just indicates whether a
player is a center, a forward, or a guard.
data$CGF <- ifelse(nchar(data$Pos) == 1, data$Pos,

substr(data$Pos, 2, 2))

table(data$CGF)

C F G
4 9 6

Splitting Strings

Suppose we want to break a string apart. For instance, we may
want to do this if we want to create separate variables for first and
last name.

The strsplit function takes a vector of strings and splits them
wherever the string indicated by the split argument appears.
names <- strsplit(data$Player, split = " ")

It returns a list with the same length as the vector of strings.

Each element of the list has a variable number of elements,
depending on how the string used to split appeared.

What strsplit Returns

names[[1]]

[1] "Jayson" "Tatum"
names[[13]]

[1] "Xavier" "Tillman" "Sr."

We will want to manipulate the output of strsplit using the
functions we learned about for working with lists, lapply and
unlist.

Summarizing Strings Created by strsplit

We can summarize the number of substrings created by splitting
player names whereever a space appears.
table(unlist(lapply(names, length)))

2 3
18 1

Extracting Individual Substrings

Since the player’s first name is always the first substring returned
by splitting on spaces, we can create a new variable that
corresponds to the first substring.
data$First <-

unlist(
lapply(

strsplit(data$Player, " "),
function(x) {x[1]}))

Extracting and Combining Individual Substrings

Some players have last names that include a space, which leads to
last names being made up of multiple substrings created by
splitting on spaces.

This means that creating a last name variable will require learning
how to combine strings.

Combining Strings

The paste function allows us to combine strings.

It takes a collection of strings and an argument called sep, which
describes how the strings are separated when combined.
paste("Boston", "Celtics")

[1] "Boston Celtics"

The default when sep is not specified is to separate strings with a
single space.
paste("Boston", "Celtics", sep = " ")

[1] "Boston Celtics"
paste("Boston", "Celtics", sep = "")

[1] "BostonCeltics"

Combining Strings

The paste function can also be applied to vectors, in multiple
ways.

If multiple vectors are specified, it will paste them together
element by element and return a vector that is the same length as
the longest vector that was supplied.
paste(c("Boston", "Los Angeles"), c("Celtics", "Lakers"))

[1] "Boston Celtics" "Los Angeles Lakers"

Does paste “Recycle”?

Yes. Be careful!
paste(c("Boston", "Los Angeles"), c("Celtics"))

[1] "Boston Celtics" "Los Angeles Celtics"

It returns a vector that is the same length as the longest vector
that was supplied.
paste(c("Boston"), c("Celtics", "Lakers"))

[1] "Boston Celtics" "Boston Lakers"

Combining Elements of a Vector

Sometimes, we may want to use paste to combine all elements of
a single vector. To do this, we need to specify the collapse
argument instead of the sep argument.
paste(c("Boston", "Celtics"), collapse = " ")

[1] "Boston Celtics"

The string provided to collapse will be used to separate elements
of the provided vector when they are combined.

Creating a Last Name Variable

We can use what we just learned to create a last name variable!
data$Last <- unlist(

lapply(strsplit(data$Player, " "),
function(x) {

paste(x[2:length(x)], collapse = " ")}))

Creating Indicators for Awards

We can use what we’ve learned to create indicator variables for:
▶ Defensive Player of the Year
▶ All Star

An indicator or dummy variable takes on value of 1 or 0 depending
on whether or not a statement is true.

Try it!

Searching Strings

There are two useful functions for searching strings:
▶ grep, which takes string to search for, a vector of strings to

search in, and returns a vector of indices for which the
searched string appears

▶ grepl, which takes string to search for, a vector of strings to
search in, and returns a logical vector of that is TRUE when
the searched string appears

grep("Ja", data$First)

[1] 1 3 15
grepl("Ja", data$First)

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE TRUE FALSE FALSE FALSE FALSE

Creating Indicators for Awards with grepl

You can use grepl to create Defensive Player of the Year and All
Star indicators.

Try it!

Modifying Strings with sub and gsub

There are two useful functions for modifying strings via
substitution:

▶ sub takes a string to look for, a new string to replace the
string to look for with (once), and a vector of strings to apply
the replacement to

▶ gsub takes a string to look for, a new string to replace the
string to look for with (as many times as needed), and a
vector of strings to apply the replacement to

Demonstration of sub and gsub

data$Awards[1:4]

[1] "MVP-6,CPOY-9,AS,NBA1" "DPOY-8" "AS"
[4] "DPOY-6"
sub("-", "", data$Awards[1:4])

[1] "MVP6,CPOY-9,AS,NBA1" "DPOY8" "AS"
[4] "DPOY6"
gsub("-", "", data$Awards[1:4])

[1] "MVP6,CPOY9,AS,NBA1" "DPOY8" "AS"
[4] "DPOY6"

Creating CGF Variable with sub or gsub

We can remake the new variable based on Pos that just indicates
whether a player is a center, a forward, or a guard more easily with
sub or gsub.

Try it!

Finding Starting Position

There are two useful functions for finding the position where a
specified string begins:

▶ regexpr, takes a string to look for (once), and a vector of
strings to look in

▶ gregexpr, takes a string to look for (multiple times), and a
vector of strings to look in

Finding Starting Position with regexpr

data$Player[1]

[1] "Jayson Tatum"
regexpr("a", data$Player[1])

[1] 2
attr(,"match.length")
[1] 1
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

Finding Starting Position with regexpr

data$Player[1]

[1] "Jayson Tatum"
gregexpr("a", data$Player[1])

[[1]]
[1] 2 9
attr(,"match.length")
[1] 1 1
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

Finding Starting Position for Vectors

regexpr("a", data$Player)

gregexpr("a", data$Player)

Regular Expressions

Remember when we saw all of the options for the LIKE command
in SQL, which allows us to find make more specific requests for
text matches?

Regular expressions are a related concept.

They allow us to look for broad types of patterns in strings.

Using Regular Expressions

We can put letters in brackets to look for strings that contain any
of the letters
grep("[ao]", data$First)

[1] 1 3 5 6 8 10 12 13 14 15 16 17

We can also search for strings of a specific length that have
arbitrary letters where ever a period appears
grep("Jay..n", data$First)

[1] 1 3

Special Characters
Note - we just saw that when using regular expression functions
e.g. grep, certain characters such as [or . have a special
meaning.
grep(".", data$Last)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

To actually look for these characters, we need to either specify an
argument fixed = TRUE or use escapes characters \\ to tell R to
look for the specific character
grep(".", data$Last, fixed = TRUE)

[1] 13
grep("\\.", data$Last)

[1] 13

Reading in Text Line by Line

We can read in a text file line by line using the readLines
command.

This creates a vector with one element per line.

For instance, we could read any of our .csv or .txt files in this
way.
lines <-

readLines("https://.../sportsref_download_5.txt")

Reading in Text Line by Line

You may frequently get the following warning when using
readLines.

Warning in
readLines("https://maryclare.github.io/content/courses/statisticalcomputing/misc/sportsref_download_5.txt"):
incomplete final line found on
'https://maryclare.github.io/content/courses/statisticalcomputing/misc/sportsref_download_5.txt'

This means that the last line didn’t technically end with a line
break.

R doesn’t like that, but everything will still work ok.

If you want to make the error message go away you can open the
file in your preferred text editor and add a line break at the end, so
that the file ends with an empty line.

What readLines Provides

We can look at a few lines of output from readLines to get a
sense of what it provides:
lines[1]

[1] "Rk\tPlayer\tAge\tPos\tG\tGS\tMP\tFG\tFGA\tFG%\t3P\t3PA\t3P%\t2P\t2PA\t2P%\teFG%\tFT\tFTA\tFT%\tORB\tDRB\tTRB\tAST\tSTL\tBLK\tTOV\tPF\tPTS\tAwards"
lines[2]

[1] "1\tJayson Tatum\t25\tPF\t74\t74\t2645\t9.1\t19.4\t0.471\t3.1\t8.3\t0.376\t6\t11.1\t0.542\t0.552\t5.6\t6.8\t0.833\t0.9\t7.3\t8.2\t5\t1\t0.6\t2.6\t2\t27\t\"MVP-6,CPOY-9,AS,NBA1\""

Reading in Data from HTML Source Code

As an activity, we’re going to use readLines and what we have
learned about working with strings to read in the same Celtics data
we’ve been using from the source code:

https://www.basketball-
reference.com/teams/BOS/2024.html#all_per_minute_stats

https://www.basketball-reference.com/teams/BOS/2024.html#all_per_minute_stats
https://www.basketball-reference.com/teams/BOS/2024.html#all_per_minute_stats

