
Statistical Learning

Maryclare Griffin

2024-09-05

This material is based on Chapter 2 of Introduction to Statistical Learning (ISL) and Chapter 2 of Elements of
Statistical Learning (ESL). We will tend to follow ISL more closely, and look to ESL for occasional additional
higher level material.

For the next several lectures, we will focus on supervised learning where we observe inputs X and an output
y. We will assume that there is some statistical model relating pairs of inputs and outputs,

Y = f(X) + ϵ,

where f is a fixed but unknown function of X = X1, . . . , Xp and ϵ is a mean zero random error term which is
independent of X. The random error may reflect random variation in the measurement of Y or variation
associated with additional unobserved variables that account for variation of observed output yi corresponding
to the same inputs xi.

We will be interested in estimating f . We will refer to the estimated f as f̂ . Generally, the goal of estimating
f is either:

• Prediction: Predicting the output Y given certain inputs, leveraging the fact that ϵ is mean zero. A
predicted value of Y will be denoted as Ŷ = f̂(X).

• Inference: Understanding the association between Y and X1, . . . , Xp.

When we are interested in prediction, our goal is to minimize

E[(Y − f̂(X))2] = E[(f(X) − f̂(X))2]︸ ︷︷ ︸
Reducible

+ Var[ϵ]︸ ︷︷ ︸
Irreducible

,

specifically the reducible error E[(f(X) − f̂(X))2]. We refer to E[(f(X) − f̂(X))]2 as the reducible error
because improving our estimate f̂ of f can make it smaller. We refer to Var[ϵ] as the irreducible error because
is inherent to the data and cannot be reduced. When making predictions, the form of f̂(X) is a secondary
concern and black box methods are popular.

When we are interested in inference, understanding the form of f̂ , is more important because we may want
to understand phenomena that correspond to specific properties of f , e.g.:

• Which predictors x1, . . . , xp are associated with the response y
• Which predictors x1, . . . , xp have an approximately linear association with the response y
• The relationship between each predictor x1, . . . , xp and the response y

There is often a trade-off between methods that are best for prediction versus inference, for instance
linear models can be very useful for inference because they are interpretable, but tend to provide poorer
predictions.

This class will cover many methods for estimating linear and/or nonlinear functions f from n observations,
{(x1, y1), . . . , (xn, yn)} where xi = (xi1, . . . , xip)⊤. The data we use to estimate f will sometimes be called
the training data. Methods for estimating f can often be described as parametric or non-parametric.
We will consider both, and we note that sometimes there is some overlap between the two.
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Parametric methods require (i) choice of a functional form for f(X) that reduces the problem of estimating
an entire p-dimensional function to a problem of estimating a smaller number of parameters and a (ii) choice
of a procedure for finding values of the parameters that yield f̂(X) satisfying f̂(X) ≈ Y .

• For instance, ordinary least squares (i) assumes linearity of f(X), i.e. f(X) = β0 + β1X1 + · · · + βpXp,
and reduces the problem of estimating f(X) to the problem of estimating β0, β1, . . . , βp and (ii) estimates
β0, β1, . . . , βp by minimizing the sum of squared errors

∑n
i=1(Yi − β0 − β1Xi1 − · · · − βpXip)2 with

respect to β0, β1, . . . , βp.

A problem with parametric methods is that the choice of a functional form for f(X) may be incorrect. We
can protect against this by choosing more flexible functional forms for f(X), but more flexible functional forms
for f(X) will depend on more parameters and tend to overfit the data by including too much information
from the irreducible part of Y - the noise - in the estimate of f̂(X).

Non-Parametric methods do not make explicit assumptions about the functional form for f(X). This is a
great thing! But it is expensive in terms of data. Non-parametric tend to require much more data, i.e. larger
values of n, to produce accurate estimates of f(X). Additionally, the flexibility of non-parametric approaches
can make it difficult to perform inference, as they tend to be less interpretable. Specifically, it can be harder
to explain how changes in an individual predictor xj are associated with changes in the response y based on
a non-parametric estimate.

The mention of overfitting suggests a measure of how well a model fits, i.e. a quantification of how close the
estimate f̂(X) is to the observed response Y . One of the most commonly used measures is mean squared
error (MSE),

1
n

n∑
i=1

(yi − f̂(xi))2.

Above, the MSE is defined as a function of the training data, i.e. the n observations of xi and yi that we fit
the model to, and will sometimes be called the training MSE. We make this distinction because often -
especially when we are interested in prediction - we are not interested in how well the model fits the data
used to estimate f̂ , but rather how well the model fits data we haven’t seen before. Letting (x0, y0) refer to
an arbitrary data point that has not been seen before, we define the test MSE as

(y0 − f̂(x0))2.

We can imagine averaging this over all possible observations that we haven’t seen before but may in the
future. This quantity measures how well an estimate f̂ of f performs when used to fit data that we have not
seen before.

Having defined training and test MSE allows us to better define overfitting. A model that is overfitting
will have a very low training MSE and a very low test MSE.

Unfortunately, we cannot compute the test MSE as defined, because the test MSE depends on data that we
have not seen before. Fortunately, we can approximate it by repeatedly defining training data as a subset of
our observed data, and defining test data as the remainder that was not used to fit the model. This procedure
describes cross-validation, and we will return to it in future lectures.

A concept that is closely related to overfitting that also helps us understand differences between parametric
and non-parametric methods is the bias-variance trade off. Let E[(y0 − f̂(x0))2] refer to the expected
squared error over unobserved data points. It can be decomposed as:

E[(y0 − f̂(x0))2] = E[(f̂(x0) − E[f̂(x0)])2]︸ ︷︷ ︸
Var[f̂(x0)]

+ E[f̂(x0) − f(x0)]2︸ ︷︷ ︸
Squared Bias[f̂(x0)]

+Var[ϵ].
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We can think of the first term - Var[f̂(x0)] - as quantifying how much our estimate f̂ is expected to change if
fit to a different training dataset. Estimates f̂ that overfit the data will be expected to change a lot and
have high Var[f̂(x0)]. Because they are more flexible, non-parametric methods tend to be associated with
higher variance.

We can think of the second term - Bias[f̂(x0)]2 - as quantifying how accurate our estimate f̂ is. Because they
are constrained in ways that may not reflect the true structure of f(X), parametric methods tend to be
associated with bias.

In general, more flexible methods are associated with higher variance and lower bias. This phenomenon is
called the bias-variance tradeoff. Finding the best balance of the two will require being able to toggle how
flexible a method or estimate f̂ is and find a happy medium. This is also something we will discuss in future
lectures.
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