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This material is based on Chapter 3 of Introduction to Statistical Learning (ISL) and parts of Chapter 3
of Elements of Statistical Learning (ESL). We will tend to follow ISL more closely, and look to ESL for
occasional additional higher level material.

Simple linear regression relates a quantitative response Y to a single predictor variable Y by assuming

Y ≈ β0 + β1X (1)

and obtaining estimates of the coefficients β̂0 and β̂1, which can be used to form predictions of Y given X = x,
ŷ = β̂0 + β̂1x and which can be used to draw inference on the presence and strength of the relationship
between X and Y .

Sometimes, we will refer to fitting the model described by (1) as regressing Y on or onto X.

We often refer to the unknown constant β0 as the intercept and β1 as the slope. The intercept β0 represents
the expected value of Y when X = 0, and the slope β1 represents the average increase in Y associated with a
one unit change in X. Together, β0 and β1 are often called (regression) coefficients or parameters.

We estimate β0 and β1 given n observations (x1, y1), . . . , (xn, yn) by making the estimates β̂0 + β̂1x as close
as possible to the observed values yi. We measure closeness using the least squares criterion,

n∑
i=1

(yi − b0 − xib1)2,

with and minimize it with respect to b0 and b1.

When evaluated at the least squares minimizing values β̂0 and β̂1, this quantity is called the residual sum
of squares (RSS),

RSS =
n∑

i=1
(yi − β̂0 − xiβ̂1)2, (2)

where yi − β̂0 − β̂1xi refers to the i-th residual, denoted by ei.

Letting ȳ = 1
n

∑n
i=1 yi and x̄ = 1

n

∑n
i=1 xi refer to the sample means of the response and the single predictor,

we can show that closed form solutions are available for β̂1 and β̂0,

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 , β̂0 = ȳ − β̂1x̄.

Going back to the idea that we assume that the true relationship between X and Y satisfies Y = f(X) + ϵ
for an unknown function f and mean-zero error ϵ, then we can think of linear regression as approximating f
by a linear function β0 + β1Xi. The error ϵ may reflect measurement error or deviations of the relationship
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between X and Y from linearity. The error ϵ are assumed to be independent of the predictor X. In what
follows, when we say “the simple linear model holds” we mean that Y = β0 + β1X + ϵ for some fixed but
unknown β0 and β1 and ϵ is a mean zero error that is independent of X. When the simple linear model holds,
we may refer to β0 + β1X as the population regression line. The regression line obtained from the least
square estimates β̂0 + β̂1X refers to the least squares regression line.

When the simple linear model holds, the least squares estimates β̂0 and β̂1 are unbiased estimators for β0
and β1, i.e. E[β̂0] = β0 and E[β̂1] = β1. With some additional assumptions, specifically that the errors ϵ are
independent, identically distributed, and have finite variance σ2 = Var[ϵ] < ∞, the variances of β̂0 and β̂1
under the simple linear model are

Var[β̂0] = σ2
(

1
n

+ x̄2∑n
i=1(xi − x̄)2

)
, Var[β̂0] = σ2

(
1∑n

i=1(xi − x̄)2

)
.

We can estimate these variances by plugging in an estimate of σ2, obtained by dividing the residual sum of
squares by n − 2. The square root of the estimated variances is often called the standard error,

SE[β̂0]2 =
(

RSS
n − 2

) (
1
n

+ x̄2∑n
i=1(xi − x̄)2

)
, SE[β̂0]2 =

(
RSS
n − 2

) (
1∑n

i=1(xi − x̄)2

)
.

Standard errors can be used to obtain 100 × (1 − α)% confidence intervals, which describes a range of
values which are expected to cover the true value of the corresponding parameter in 100 × (1 − α)% of
repeated samples. An approximate 100 × (1 − α)% confidence interval is(

β̂j + zα/2SE[β̂j ], β̂j + z1−α/2SE[β̂j ]
)

for j = 0, 1,

where zq is the q-th quantile of a standard normal random variable.

Standard errors can also be used to conduct hypothesis tests, which allow us to test if the true value of a
parameter is equal to a specific value. The most common hypothesis test tests the null hypothesis that
there is no relationship between X and Y , denoted by H0, versus the alternative hypothesis that there is
some relationship between X and Y , denoted by Ha. This corresponds to the test H0: β1 = 0 versus the
alternative Ha: β1 ̸= 0. We can test this null hypothesis using a t-statistic, β̂1/SE[β̂1]. This is a quantity
that - if our simple linear model holds and the errors are independent and identically distributed with finite
variance - should be approximately distributed according to a standard normal distribution. Therefore, a
level-α test of the null hypothesis H0 can be obtained by comparing β̂1/SE[β̂1] to the α/2 and 1 − α/2
quantiles of a standard normal distribution zα/2 and z1−α/2. If our test statistic is outside of the interval
(zα/2, z1−α/2) we reject the null hypothesis and conclude there is a relationship between X and Y . Otherwise,
we fail to reject the null hypothesis and cannot conclude that there is a relationship between X and Y .

We can also compute the p-value of this test by computing the probability that a standard normal random
variable z is more extreme than the t-statistic we observed, β̂1/SE[β̂1],

2Pr(z ≥ |β̂1/SE[β̂1]|).

This is the probability of observing a t-statistic as extreme or more extreme than the one we observed relative
to the distribution we would expect it to have if the null hypothesis were true. We can (roughly speaking)
interpret the p-value as an (inverse) measure of the strength of the evidence of a relationship between X and
Y ; smaller p-values correspond to stronger evidence of a relationship. For a level-α test of the null hypothesis
H0, we reject the null when the corresponding p-value is smaller than α.

Having fit a simple linear regression model, it is natural to ask how well the model fits the observed data.
We will consider two measures of fit: the residual standard error (RSE), which we encountered earlier
when we discussed estimating the error variance σ2, and the R2 statistic. RSE is the square root of the least
squares estimator of σ2, RSS/(n − 2).

A limitation of using RSE to measure model fit is that it is sensitive to the scale of the response, Y . A
scale-free measure of model fit that is very interpretable is R2, which descibes the proportion of overall
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variability of the response that is explained by the fitted model. Letting TSS =
∑n

i=1(yi − ȳ)2 be a measure
of the overall variability of the response, which we refer to as the total sum of squares. The R2 statistic is

R2 = 1 − RSS
TSS .

We can also interpret R2 as a measure of the correlation between X and Y , recalling that the sample
correlation of X and Y is

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

.

It can be shown that R2 = r.

Most interesting questions involve more than one predictor variable, i.e. X = (X1, . . . , Xp) with p > 1. This
requires a multiple linear regression model,

Y = β0 + β1X1 + · · · + βpXp + ϵ, (3)

where βj is the unknown average change in the response Y associated with a one unit increase in the j-th
predictor Xj holding all other predictors constant.

As in simple linear regression, we estimate β0, β1, . . . , βp by finding the values β̂0, β̂1, . . . , β̂p that minimize
the least squares criterion

n∑
i=1

(yi − b0 − xi1b1 − · · · − xipbp)2,

with respect to b0, b1, . . . , bp. Importantly, there is only a unique minimizer of the leasst squares criterion
when p < n, i.e. we have more observations than predictors, and when the predictors x1, . . . , xp aren’t too
correlated with each other.

The least squares criterion evaluated at the estimates β̂0, β̂1, . . . , β̂p is

RSS =
n∑

i=1
(yi − β̂0 − xi1β̂1 − · · · − xipβ̂p)2, (4)

where yi − β̂0 − β̂1xi1 − · · · − β̂pxip continues to refer to the i-th residual, denoted by ei.

It is very helpful to use linear algebra when we are talking about multiple linear regression. Using linear
algebra, the least squares criterion is

(y − Xb)⊤ (y − Xb) .

The closed form expression for the estimate vector of regression coefficients β̂ = (β̂0, β̂1, . . . , β̂p) is

β̂ =
(

X⊤X
)−1

X⊤y.

Note we need to be able to invert X⊤X to obtain the least squares estimator. This corresponds to the
condition for a unique minimizer of the least squares criterion that we referenced earlier - X⊤X is invertible
when p < n, i.e. we have more observations than predictors, and when the predictors x1, . . . , xp aren’t too
correlated with each other. Having obtained β̂, a predicted value of the response Ŷ can be obtained from the
estimated coefficients as

Ŷ = β̂0 + β̂1X1 + · · · + β̂pXp.

Accordingly, the residual sum of squares (RSS) is

RSS =
(

y − Xβ̂
)⊤ (

y − Xβ̂
)

.
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As in simple linear regression, when the (multiple) linear regression model holds, i.e. when Y = β0 + β1X1 +
· · · + βpXp + ϵ and ϵ is mean 0 and not correlated with X1, . . . , Xp, the least squares estimator β̂ of β is
unbiased. When the linear regression model holds and the errors are independent and identically distributed
with finite variance Var[ϵ] = σ2 < ∞, the least squares estimator’s variance is

Var[β̂] = σ2
(

X⊤X
)−1

.

We can plug in the least squares estimator for σ2, RSS/(n−p−1), to obtain the estimated variance-covariance
matrix of β̂, (

RSS

n − p − 1

) (
X⊤X

)−1

Square roots of diagonal elements of this variance-covariance matrix are the standard errors of the corre-
sponding regression coefficent. As in the simple linear regression setting, we can use the estimated standard
errors, along with the estimated coefficients, to construct confidence intervals and perform tests of null
hypotheses that an individual regression coefficient is equal to a specific value. Furthermore, the estimated
variance-covariance matrix can be used to estimate the variance of predictions, construct confidence intervals
for predictions, and construct prediction intervals for future values.

When the linear regression model holds and the errors are independent and identically distributed with finite
variance Var[ϵ] = σ2 < ∞, we can test the null hypothesis H0 that that there is no relationship between the
response and the predictors versus the alternative Ha that there is a relationship between at least one of the
predictors. The null hypothesis H0 corresponds to the scenario where β1 = · · · = βp = 0, and the alternative
hypothesis Ha corresponds to the scenario where at least one βj is non-zero. To perform a level-α test of this
hypothesis, we can compute the F -statistic

(TSS − RSS)/p

RSS/(n − p − 1)

and compare it to the 1 − α quantile of an F distribution with p and n − p − 1 degrees of freedom. We reject
the null when the F -statistic is more extreme than the 1 − α quantile. Alternatively, we can compute a
p-value by evaluating the probability that an F -distributed random variable with p and n − p − 1 degrees of
freedom exceeds the F -statistic.

Alternatively, we may want to test the null hypothesis H0 that that there is no relationship between the
response and a specific subset of q predictors versus the alternative Ha that there is a relationship between
at least one of the q selected predictors. Without loss of generality, we can imagine that the specific set of
q predictors whose relationship with the response we want to test are the last q predictors. Then the null
hypothesis H0 corresponds to the scenario where βp−q+1 = · · · = βp = 0, and the alternative hypothesis Ha

corresponds to the scenario where at least one βj is non-zero for p − q + 1 ≤ j ≤ p. To perform a level-α test
of this hypothesis, we can compute the F -statistic

(RSS0 − RSS)/q

RSS/(n − p − 1) ,

where RSS0 refers to the residual sum of squares based on fitting the multiple linear regression model without
the last q predictors. We can then compare this F -statistic to the 1 − α quantile of an F distribution with q
and n − p − 1 degrees of freedom. We reject the null when the F -statistic is more extreme than the 1 − α
quantile. Alternatively, we can compute a p-value by evaluating the probability that an F -distributed random
variable with q and n − p − 1 degrees of freedom exceeds the F -statistic.

This last hypothesis test starts to lead us to the idea of model selection, which is the choice of which variables
to include in a linear regression model. We could imagine selecting a model by starting with all p possible
predictors, and then performing F -tests to eliminate individual variables or subsets of variables from the
model. This type of strategy where we perform model selection by starting with all of the predictors is related
to backward selection.
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This can be tricky or not even feasible when we have measured a lot of variables. If p > n, we cannot actually
compute any of these F -statistics. This motivates the idea of forward selection, which is to start with an
empty model with no predictors and add predictors one at a time in a systematic way. Forward selection has
the advantage of being feasible in situations where backward selection is not, but it also has the disadvantage
of being greedy. This is something we’ll discuss much more later in the semester.

More broadly, comparing models requires a measure of model fit. It is especially useful to have measures of
model fit that do not require that models be nested, meaning that the variables in one model are a subset of
the variables in another. Naively, we can consider RSE. There are also many other widely used measures
of model fit, including Mallow’s Cp, Akaike information criterion (AIC), Bayesian information
criterion (BIC), and adjusted R2. We will talk about these in future chapters. Note that we need to be
very careful about using R2 as a measure of model fit - it will never decrease when we add a variable to a
model.

Linear models are much more flexible than one might initially realize, because they only require linearity of
f(X) in β. This means that we can use linear models to relate a response to qualitative predictors/variables
and we can use linear models to describe nonlinear relationships between Y and X1, . . . , Xp.

We can incorporate qualitative predictor that takes on K unique values by constructing K −1 binary variables

vik =
{

1 if the qualitative predictor takes on the k-th unique value
0 otherwise

for k = 1, . . . , K − 1. These are sometimes called dummy variables. Alternatively, this way of coding
a qualitative predictor is sometimes called one-hot encoding. Note that if we want to test if there is
a relationship between a qualitative predictor and the response, we need to test if all of the coefficients
associated with all of the corresponding dummy variables are jointly equal to zero.

Incorporating interactions refers to incorporating an additional variable that correspond to the product of a
pair of predictors, e.g.

Y = β0 + β1X1 + β2X2 + β3(X1 × X2) + ϵ.

This allows for the average change in response associated with changes in one variable to depend on the value
of the other variable. Note that when interactions have been introduced, the question of whether or not a
specific predictor is associated with the response no longer corresponds to the question of whether or not a
single regression coefficient is equal to zero, but rather the question of whether or not all of the regression
coefficients associated with functions of the specific predictor are jointly equal to zero.

Last, if there is evidence that the relationship between the response and a predictor is non-linear, we can
introduce polynomial functions of the predictor as additional variables in the multiple linear model, e.g.

Y = β0 + β1X + β2X2 + ϵ.

Again, when additional polynomial functions of a predictor have been introduced, the question of whether
or not a specific predictor is associated with the response no longer corresponds to the question of whether
or not a single regression coefficient is equal to zero, but rather the question of whether or not all of the
regression coefficients associated with functions of the specific predictor are jointly equal to zero. We will
explore this idea more later in the semester.

The arguments we made to justify the value of the multiple least squares estimator assumed that the linear
regression model holds. This is unrealistic! There are many ways that it can be violated, some of which
have greater consequences than others. Violations of the linear regression model can often be diagnosed by
examining the residuals, ei = yi − β̂0 − β̂1xi1 − · · · − β̂pxip. In general, if the linear model holds, the residuals
should not contain any meaningful trends or information.

• Trends relating the residuals to the predictors can indicate nonlinearity and motivate the inclusion of
interactions and/or polynomial terms. They can also motivate transforming the response, which we
haven’t talked about yet.
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• Residuals that become more variable as the associated values of the response increase or decrease indicate
violation of the constant variance assumption. In some cases, this can be addressed by implementing
weighted least squares. For instance, if the i-th value of the response yi reflects an average over ni units,
we could perform weighted least squares with weights equal to ni.

• If observations are related in some way a priori, e.g. correspond to consecutive points in time or space
or related individuals, and residuals corresponding to more related observations tend to be more similar,
the assumption of independent errors may be violated.

• Extreme residual values suggest the presence of outliers.

We haven’t talked about how to address the last two issues yet.

There can also be issues that arise due to the structure of the data itself. Specifically, certain observations
may have high leverage, meaning that they make an especially large contribution to estimation of the linear
regression coefficients. These tend to be observations that correspond to extreme values of the predictors.
Additionally, predictors can be strongly correlated with each other, which can lead to more variable and
difficult to interpret estimates of the regression coefficients. This is often referred to as collinearity of the
matrix of variables X.

K-nearest neighbors regression (KNN) is one of the simplest non-parametric methods for estimating f .
KNN estimates f(xi) by averaging the K observed values of the response corresponding to the K observations
with predictor xj closest to xi.

Let N (K)
i refer to the set of K indices of observed values of the predictor that are closest to xi. Then the

KNN estimate of f(xi) is

f̂(xi) = 1
K

∑
j∈N (K)

i

yj .

The value of K is chosen by the user and determines the bias and variance of the estimate of f . Smaller K
correspond to less biased but more variable estimates, whereas larger K correspond to (potentially) more
biased and less variable estimates.

Bias seems quite undesirable, but there are several disadvantages to using KNN. Specifically, KNN specifically
and non-parametric more generally, are less interpretable and less amenable to inference, e.g. implementation
of hypothesis tests. Furthermore, the performance of KNN deteriorates rapidly as p, the number of predictors
and/or dimension of X, increases. This is because it is harder to find neighbors in high dimensions. This is
related to the idea of the curse of dimensionality.

6


