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This material is based on Chapters 2 and 4 of Introduction to Statistical Learning (ISL) and parts of Chapter
4 of Elements of Statistical Learning (ESL). We will tend to follow ISL more closely, and look to ESL for
occasional additional higher level material. There may be some slight changes to the notation.

For the past several lectures, we have been focused on the supervised learning problem where where we
observe inputs X and a quantitative output y and assuming

Y = f(X) +e,

where f is a fixed but unknown function of X = X;,..., X, and € is a mean zero random error term which is
independent of X.

In practice, we often encounter a qualitative or categorical output y, with elements that each take on one
of M distinct values. Sometimes these distinct values are also called classes, and the problem of predicting a
future output value or class is referred to as classification.

If we want to predict future values of the output, it no longer makes sense to think about minimizing
Bl(Y - f(X))*]

when Y is qualitative. Rather, our goal will be to obtain predictions Y based on estimated functions of the
inputs f (X) that correctly identify the value the observed outpout is most likely to take on, i.e. we want
to obtain predictions Y from f (X) that satisfy Y =Y as often as possible. We refer to this as predictions
that minimize the error rate and we refer to the estimated function f (X) mapping from f (X) to Y as a
classifier.

Let I(y; # ;) refer to an indicator function that is equal to 0 if y; = §;, i.e. if the prediction for the
i-th training data point matches the observed value of the output, and 1 otherwise. We can quantify the
performance of a classifier on the training data via the training error rate,

n
Z I(y; # ).
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Analagously to the setting where the output is quantitative, we can also quantify the performance of a
classifier on test data that were not used to fit the classifier. Letting (z, yo) refer to an arbitrary data point
that has not been seen before, we define the test error rate as

I(yo # 7o)- (1)

Again, we can imagine averaging this over all possible observations that we haven’t seen before but may in
the future. The best classifier will minimize the average test error rate over test data that were not used to
fit the classifier.

So far the definitions of the error rate, training error rate, and test error rate are a bit awkward, because
they do not explicitly depend on the f(X), rather they depend on f(X) implicitly through Y. Relatedly,
thinking of the output as the sum of an unknown function of the inputs and a mean zero error is no longer
meaningful - what is E[Y|X] = f(X) if Y is qualitative? It doesn’t make sense!
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Accordingly, we will make the relationship between f (X) and Y more explicit. It can be proven that (1)
is minimized on average by a classifier that predicts the class that is most likely given the inputs, i.e. if
v; = 1,...,vp represents all of the possible values that Y can take on and if the probability that ¥ takes on
value v; given inputs X is known Pr(Y = v;|X), this classifier assigns predictions gy according to

go = argmax,;Pr(Y = vj;]zo),
Note that when M = 2, this corresponds to predicting whichever class has probability Pr(Y = v;|zo) > 0.5.
This suggests defining

fi(X) =Pr(Y = v;[X).

We now have a subscript j associated with f(X) that reflects the fact that we need to define these probabilities
for every possible value of Y.

Note that because 7 = 1,...,M indexes all of the possible values that the output Y could take on,
Z;Vil Pr(Y = v;) = Z;Vil fj(X) = 1. This means that given M — 1 probabilities, we can always re-
construct the remaining probability. For this reason, we will sometimes models for qualitative output only
specify Pr(Y = v;) = f;(X) and estimate f;(X) for M — 1 values of j, most frequently for j =2,..., M or
j=1,...,M—1.

Just as in the regression setting where we could decompose the performance of an estimated classifier into
reducible and irreducable, we can do something similar in the classification setting. The equivalent to
irreducible error in the classification setting is the Bayes error rate,

1 = Efmax; f;(X)], (2)

where the expectation is taken with respect to X. This describes the error rate even if the true probablities
fj(X) were known. The Bayes error rate is equal to 0 when the Bayes decision boundary, which describes
the set of values of X for which all possible values of the outcome are equally likely perfectly separates
the outputs. This corresponds to the setting where max; Pr(Y = v;|X) =1 for all X and the outputs are
deterministic functions of the inputs. In real life (and furthermore in this statistical learning class in which
we are studying random outputs), the outputs are rarely deterministic functions of the inputs and the Bayes
error rate is rarely 0.

Now we will introduce our first classifier which is very closely related to based on K-nearest neighbors
regression, K-nearest neighbors classification. Like its regression counterpart, KNN classification is one
of the simplest non-parametric methods for classification.

Let ./\/Z-(K) refer to the set of K indices of observed values of the predictor that are closest to x;. Then the
KNN estimate of f;(z;) is

fila:) = % > Iy =)

keN O

and the KNN classifier assigns the prediction g; = v; where v; is the value of the output associated with the
highest estimated probability f;(z;)

Again, the value of K is chosen by the user and determines the bias and variance of the estimate of f. Smaller
K correspond to less biased but more variable estimates, whereas larger K correspond to (potentially) more
biased and less variable estimates.

Just as in the regression setting, the performance of KNN classifiers depends on how K is chosen and if K is
chosen to be too small, KNN classifiers can overfit the data. Furthermore, the performance of KNN classifiers
also deteriorates rapidly as p, the number of predictors and/or dimension of X, increases. This is because it
is harder to find neighbors in high dimensions. This is related to the idea of the curse of dimensionality.

This leads us to parametric classifiers. In what follows we will mainly consider the binary setting When
Y is binary with M = 2 levels, we will refer to the levels of Y as equal to v; = 0 or vy = 1, specify



Pr(Y = 1) = f3(X), and drop the subscript on f2(X), letting f(X) = fo(X). We can recover f1(X) from
f(X) according to f1(X) =1— f(X). Note that the KNN classifier’s estimate of f(X) in this case is identical
to the estimate of f(X) obtained from KNN regression.

Similarly, the simplest parametric classifier is obtained by using linear regression to estimate f(X). We
assume f(X) = fo + f1X1 + - + B, X, and estimate By, f1,. .., [p by finding the values Sy, 51, ..., 8, that
minimize the least squares criterion

n
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with respect to by, b1, ..., b,. Then predictions Y can be obtained by setting Y = I(BO + Ble 4+ 4 Spo >
0.5). As in the regression case, there is only a unique minimizer of the least squares criterion when p < n,
i.e. we have more observations than predictors, and when the predictors 1, ..., x, aren’t too correlated with
each other. We emphasize that this is only reasonable in the binary setting with M = 2 when the output is
defined to take on values 0 and 1.

There are one obvious issue with using linear regression for classification in this way - it can produce nonsensical
estimated probabilities that are less than 0 or greater than 1! This leads us to logistic regression, which is
a special case of a generalized linear model. A generalized linear model is made up of:

o A choice of link function g(-) that relates the conditional mean of an output E[Y|X] to a linear
function of the inputs Sy + 61X1 + - - - + 5pX,, satisfying E[Y|X] = g(8o + 51.X1 + - - + 8pX);
e An assumed conditional distribution of the output given values of the input.

The parameters of a generalized linear model, including B8y, 81, . . ., Bp, can then be estimated using maximimum
likelihood.

Logistic regression uses the link function

exp{fo+ (1 X1+ + B Xp}
1+ eXp{ﬂO +68 X1+ F Bpo}
1

1+exp{—Bo— 1 X1 — - — BpXp}’
which maps the real valued linear function 8y + 81 X1 + -+ + 8, X, to a number between 0 and 1. This is

sometimes called the logistic or sigmoid function. Logistic regression also assumes that the outputs Y are
Bernoulli random variables conditional on the inputs X,

9(50 + 01Xy + -+ ﬁpo) =

indep.

Y|X "~" Bernoulli

1
(1 +exp{—fo — S X1 — - — 5po}> .

When we use a nonlinear model, we can still interpret nonzero §; for j > 0 as indicating the presence of a
relationship between the outpout and the input, but the interpretation of individual g; for j > 0 changes.
The interpretation will now describe how the log odds of ¥ =1 change with changes in individual inputs X},

where the log odds are
Pr (Y =1|X)
log .
1-Pr(Y =1|X)

Personally, I don’t find log odds very interpretable beyond the fact that higher log odds correspond to ¥ =1
being more likely and lower log odds correspond to Y = 0 being more likely. Nonetheless, the interpretation
of any f; for j > 0 will be the expected change in log odds of ¥ = 1 associated with a one unit change in
X, holding all other predictors constant. Sometimes, people point to this awkward interpretation of the
regression coefficients as a reason not to use logistic regression but that is beyond the scope of this class.



Estimates of the logistic regression coefficients 307 31, . 73,, can then be obtained by maximizing the log
likelihood
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with respect to bg,b1,...,b,. This is a nonlinear function of by, by, .. bp, and we will rely on statistical
software to maximize it and find the maximum likelihood estimator 60, Bi,..., Bp

This may seem new, we have already been using maximum likelihood in this class without explicitly saying
it! The least squares estimator is the maximum likelihood estimator obtained by assuming that the outpout
is conditionally normal given the inputs with mean By + 51.X1 + - - - + 8, X, and constant variance!

A great think about many commonly used generalized linear models broadly and also for logistic regression is
that it has been shown that the asymptotic distribution of the estimated regression coefficients Bo, B, ..., 617
as n — oo can be derived to be normal and centered at the truth Sy, 81, ..., 8, with a variance-covariance
matrix that can be estimated from the data. This means that we can construct hypotheses tests of null
hypotheses that any individual 3; is equal to a certain value or that subsets of coefficients are equal to a
certain value and construct confidence intervals for the estimated regression coefficients.

Logistic regression is also straightforward to extend to qualitative outputs with M > 2 levels. This extension
is called multinomial logistic regression. Let g;; for j = 0,1,...,p refer to the regression coefficient
associated with the probability that the output Y is equal to the k-th level vy for the intercept (if j = 0) or
predictor X; (if j > 0). Multinomial logistic regression assumes that the probability that the probability that
the output Y is equal to the k-th level vy is

exp{Bro + Br1 X1 + - + BrpXp}
2211 exp{ﬁlo + BZIXI + -4+ ﬁlep}}

Going back to the notation we introduced when we first started talking about qualitative outputs, this is
fe(X) or Pr(Y = vi|X). Having assumed this link function, multinomial logistic regression then assumes
that the outputs Y are multinomial random variables conditional on the inputs X with size 1,

zndep

Y|X

Multinomial (1, ( exp{fio + Au Xy + -+ fip Xy} exp{Bao + Bari X1+ -+ Bup Xy} >)

ey exp{fBio 4+ Bu X1+ -+ BipXpt T Yk exp{Bio + Bu X1+ -+ BipXp}}

Interpretation of the estimated regression coefficients is related to the log odds ratio of level k versus level [,

b (Pr (Y = v|X)

W) = (ﬂk() - BZO) + (ﬁkl — Bll)Xl + . 4+ (ka _ Blp) X

Note that we just see the differences of pairs of regression coeflicients for different levels or classes in this
expression. This is related to the fact that the multinomial probabilities must sum to 1, which means
that the regression coefficients associated with one level/class are a deterministic function of the rest, and
reflects the fact that the linear logistic regression model can only identify each regression coefficient up to
a constant. To address this in practice, it is common to choose a reference or baseline level and set the
associated regression coefficients to 0. Often the last level, level M, is chosen as a baseline, meaning that
Bumo = Bt = -+ = Bup = 0 is assumed. Then the remaining regression coefficients gy, for k=1,...,M —1



and j > 0 can be interpreted as the expected change in log odds of Y = vy relative to the reference level
Y = v associated with a one unit change in X, holding all other predictors constant.

Alternatively, the softmax coding, which does not explicitly constrain the regression coefficients can be used.
However in this case it is crucial that inference be based on contrasts of the regression coefficients 8i; — 8
to be meaningful.

The probabilities Pr (Y = vj|X) are invariant to the coding used.

As with logistic regression for binary outputs, the parameters Bko, Bkl, R ka are estimated using maximum
likelihood and there is theory that supports the construction of normal-based confidence intervals and
hypothesis tests of the value(s) of the regression coefficients.

Now we will consider alternative generative models for classification that:

e Are more stable than linear or logistic regression based methods when classes or levels of the output
are “well separated” by the inputs;

e Can be more accurate if the distribution of the inputs conditional on the output is approximately
normal;

e Can also easily be used for qualitative outputs with M > 2 levels.
These models all build from Bayes theorem,

Pr(A, B)
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In the specific context of classification, the event A corresponds to the event that Y = v, and the event B
corresponds to the event that X = x. A generative model specifies a model for the inputs conditional on the
value vy of the output Y that defines

Pr(B|A) = Pr(X = z|Y = vy),

denoted (with some abuse of notation) as fx(X), and a model for the prior probability that the output ¥V
takes on value vy,

Pr(A4) =Pr(Y = vg),
denoted by 7, which we can estimate using the proportion of values of the output in the training data equal
to the k-th value vy.

The term generative describes that such models are based on how the observed values of the inputs are
generated given the level or class of the output.

Probabilities used for classification are given by

Pr(Y = v |x) = Sk
( K S mfi(X)

We will talk about three different models, which differ in their assumed distribution of the inputs given the
class of the output:

o Linear discriminant analysis (LDA), which assumes that inputs are conditionally normally dis-
tributed given Y = vy, with a mean pui that depends on the value of the output but a common variance
3 that is common across all possible values of the output vy



e Quadratic discriminant analysis (QDA), which assumes that inputs are conditionally normally
distributed given Y = v with a mean uy and variance Xj that both depend on the value of the output
e Naive Bayes

LDA assumes
X|Y = v ~ normal(p, )

for k=1,..., M. Letting Wy refer to the set of ny indices for training observations with output equal to vy,
ie Wy = {z = v}, estimates [ix and S of i and X can be obtained according to

Z rz;fork=1,...,.M
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QDA assumes
X|Y = v ~ normal(py, Xi)

for k =1,..., M. Estimates fi of uj are the same as in LDA, and estimates 3 of ¥ can be obtained according
to
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For LDA and QDA, fi(X) is a multivariate normal density function, which yields probabilities of the form
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which can be estimated by setting > = 3 for LDA and plugging in the estimates 7y, fix, and Sk (or S for
LDA) described above.

Note that when we use LDA, we can simplify further,

exp{—3(z — px) "I (& — )}
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In practice, instead of computing these normalized probabilities we may recognize that the ordering of the
probabilities Pr(Y = v;|X) is the same as the ordering of the numerators of Pr(Y = v;|X). Furthermore,
applying a log transformation retains the ordering while offering more computational stability.



We can also rearrange terms to relate LDA and QDA to the softmax parameterization of multinomial logistic
regression,

(exp{log (mx) — & (1) By ' +1og (|5k])) }) exp{a "5 e — 3tr (S M2 T}
YLy (exp{log (m) — 3 (1) = i +log (1)) }) exp{a TSy — Str (B 22 T)}

Pr(Y = v X) =

where we can recognize log (1) — 3 (11 &5, 11 + log (|Sk|)) as the intercept, elements of X} ', as regression
coefficients for linear functions of the predictors, and elements of E;l as regression coefficients for quadratic
functions of the predictors and their two-way interactions. With some additional algebra, we could alternatively
relate LDA and QDA to the baseline parametrization of multinomial logistic regression.

Note that elements of Z,;l are constrained to ensure that Z,;l is a symmetric positive definite matrix. When
we use LDA, as opposed to QDA, the two-way interactions cancel and vanish.

Note that although we can recognize LDA and QDA as multinomial logistic regression models, fitted LDA
and QDA models may not be identical to the multinomial logistic regression models obtained by using the
same predictors because the LDA and QDA coefficients are not obtained by maximizing the multinomial
logistic regression likelihood.

Naive Bayes addresses a major limitation of LDA and QDA, computational challenges that arise for LDA
and QDA when p is large, specifically the challenges that arise when estimating one or more p X p covariance
matrices, by assuming independence of individual predictors Xi,..., X,,.

The assumption of independence of individual predictors is rarely something that we actually believe, thus
naive in the name of the method, but is often practically useful. It also can address the limitation of needing
to assume normality of the predictors X.

Assuming independence of individual predictors allows the multivariate density of the predictors fx(X) to be
factorized into p simpler univariate densities fi;(X;),

fe(X) = H Trj (X5).

The univariate densities fx;(X;) can be modeled and estimated flexibly, without assuming that the distribution
of each predictor X; is independent and do not require estimation of any p x p covariance matrices. There
are many ways to model fi;(X;) and we will not discuss all of them here. Two of the simplest ways are:

o If X, is continuous, assuming X;|Y" = vy ~ normal(u;, cr,%j);
o If X, is qualitative with relatively few levels L, estimating f;(X;) using a histogram.

A more flexible but also more advanced approach may non-parametrically estimate f;(X;), e.g. by estimating
fr;(X;) by smoothing a histogram of X; as done by a kernel density estimator.

The probabilities used for classification in Naive Bayes are:

Tk H§:1 fkj (XJ)

Pr(Y = X) = .
=0l S m T, (X))

Rewriting this as before to resemble the softmax parametrization of multinomial logistic regression, we have

exp {log(me) + S0_, log(fii (X))}
S22y exp {log(m) + S0y log (3 (X))}

Pr(Y = v X) =

where we can recognize log(m) as an intercept and log(fx;(X;)) as potentially nonlinear functions of each
predictor. This corresponds to a generalized additive model, which we will learn about in future weeks.



To summarize, we have learned about the following types of models for classification: * Linear Regression
Models * Logistic Regression Models * Linear Discriminant Analysis * Quadratic Discriminant Analysis *
Naive Bayes

All of these models take different approaches to specifying a functional form for and estimating the parameters
of the unknown probabilities

Pr(Y = vi|X).

There is no single choice that is always best regardless of the data.

One last point to consider is whether or not we may sometimes want to adjust the threshold used to
convert, estimated probabilities to predicted values of the output. In the context of binary classification with
M = 2, we have been using the threshold of 0.5 to obtain predicted values, i.e. we predict Y =1 when
PAr(Y = v|X) > 0.5 and Y = 0 otherwise. This is known to minimize average classification error, treating
false positives (predicting Y =1 when the true Y = 0) and false negatives (predicting Y = 0 when the true
Y =1) equivalently. In real life, there may be reason to weight false positives and false negatives differently.
When this is the case, it can make sense to choose an alternative cutoff ¢ and then predict Y = 1 when
P;r(Y = vg|X) > ¢ and Y = 0 otherwise. Each cutoff ¢ is associated with a corresponding false positive rate
and false negative rate, and the “best’’ value of ¢ can be chosen by a practitioner either to reflect different
costs of false positives versus false negatives or to ensure that the number of false positives does not exceed
some prespecified number. We won’t talk about this in detail but it’s something I want you to be aware of.



