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Multivariate Regression Review (S&S 5.7)

Many methods for multivariate time series analysis build on multivariate linear regres-
sion, also known as general linear regression (not to be confused with generalized linear
regression!). When we perform multivariate linear regression, we jointly model r n x 1 re-
sponse vectors ¥y, ..., Yy, arranged as an n X r matrix Y = [y,,...,y,] as a linear function
of the same n x 1 covariate vectors @y, ..., x, arranged as an n X ¢ matrix X = [@1,...,z,].

We want to find an ¢ x r matrix of regression coefficients B such that Y ~ X B by solving:
: 2
ming |¥ — X BJ12, 1)

where [|Y||2 = 30, > i1 Y3 gives the sum of squared elements of the matrix Y.

We still refer to the quantity ||[Y — X B]|} as the residual sum of squares (RSS), as
it measures how much of the variability of Y remains after subtracting off a linear function
of the covariates. We can also still minimize (1) by differentiating; the minimizing value B

will satisfy:
X'XB-XY=0—= X'XB=X'Y.
If the matrix X is full rank with rank ¢, then the minimizing value is

B=(X'X)"'X'Y. (2)



If we want to say more about B, we need to make some more assumptions. First,
note that we can always decompose the observed response Y into a linear part X B and a

remainder W':
Y =XB+W. (3)
If we assume:
e E[W] =0, then B is unbiased, i.c. E [B} = B.
o w; N (0,3,), where w; are columns of the remainder W, then:

(%) B is the maximum likelihood estimator of B:;

() Elements of B are normally distributed, with V [I;Z] =0, (X'X )71 and Cov {(}“ i,ﬂ} —
Oij (X'X)~" where b; be the i-th column of B:;

() The residuals R =Y — X B are normally distributed, with E[R] = 0, V[r,] =
O (In - X (X/X)il X’), and Cov [Ti, ’T‘j] = 0yj (In — X (X,X)il X’) where
r; be the i-th column of R;

(o) B and Y — X B are independent.

We're not going to derive (x) this time around. Standard practice for constructing stan-
dard errors and confidence intervals is to use (x), plugging in an unbiased estimator of the
variance-covariance matrix X,,:
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Note that this is not the maximum likelihood estimate of 3, - the maximum likelihood
estimator 62 = R'R/n is biased.

It follows from (x), (1), and (o) that




This gives us a way of testing the null hypothesis that b;; is exactly equal to a specific value
because it tells us the approximate distribution of IA)Z-j for specific values of b;;. We call such
tests t-tests.

F-tests are a bit trickier to derive for multivariate linear models, so we’ll just talk about
performing model selection (choosing the covariates or columns of X to use) using AIC,
AlICc and SIC. Letting X, refer to a matrix containing k covariates and B} and Bk the
corresponding regression coefficients and their linear regression estimates, several popular

methods for performing model selection are:

(x) Compute Akaike’s Information Criterion (AIC)
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for models with k& and &’ covariates, and choose the model with the lower AIC value.

(x) Compute AIC, Bias Corrected (AICc)
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for models with k& and &’ covariates, and choose the model with the lower AIC¢ value.

(x) Compute Schwarz’s/Bayesian Information Criterion (SIC/BIC)
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for models with k& and &’ covariates, and choose the model with the lower SIC value.

Recall that whether AIC, AICc, or BIC is most appropriate for a given problem is problem-
specific; AICc can perform better than AIC when n is relatively small, and SIC/BIC can

perform better than AIC when the number of covariates k is relatively large. Because



including one additional covariate (column of X) yields r additional regression coefficients

when we are performing multivariate linear regression, we may tend to prefer SIC/BIC.



