Basic Multivariate Time Series Concepts
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The material in this set of notes is based on S&S 1.1-1.6.
Suppose we observe a multivariate time-series, i.e. an n X r matrix of r time series

observed simultanously:

Y:(y1 y,): C T =M,+W,

where M, is a fixed but unknown mean, W are random errors, and elements of each column
of Y denoted by y, are ordered in time.
A multivariate time series is characterized by its mean function m,;; = E [y;;] and co-

variance function ~;; (s,t) = Cov (Ysi, Ys;)-
e When ¢ = j, this is the autocovariance function of time series y;.

e When ¢ # j, we call this the cross-covariance function of the time series y; and y;.
Yig(s,t)

The correlation function can be derived from the covariance function: p;; (s,t) = oo D’
Yii$,8)Y;j5\Ls

like its univariate counterpart the correlation function’s values are between —1 and 1.
e When ¢ # j, we call this the cross-correlation function of the time series y; and y;.

As in the univariate case, characterizing a time series in this way is too complicated and

involves too many parameters, because the mean and covariance functions depend on the



values s and t themselves. This leads us back to the idea of stationarity. A multivariate

time series is jointly stationary if:

e The second moments of y;; are finite for all of the time series, i.e. E[y2] < co for all ¢

and ¢ =1,...,7.

e The mean function is constant for each time series and does not depend on time,

My i = My ;.

e The autocovariance function 7;;(s,t) depends on s and ¢ only through their absolute

difference h = |s —t| for alli =1,...,r.

e The cross-covariance function 7;;(s,t) depends on s and ¢ only through their difference

h=s—tforalli=1,... r.

As in the univariate case, when a time series is stationary, its autocovariance and auto-
correlation functions can be written as functions of a single variable h. For this reason, we
will drop the second arguments of the autocovariance and autocorrelation functions when a
time series is stationary, writing 7;; (h) = ;5 (h,0) and p;; (h) = pi; (h,0).

When we observe a time series Y, we do not know the mean, autocovariance, or auto-
correlation functions a priori - we need to estimate them. When Y is stationary we can

compute:

e The sample mean function:
My; =i = Zyti/n- (1)
t=1

e The sample auto-covariance function:

1 n—h

Fii (h) = — D Weeni — 1iya) (g — 1iny) (2)

t=1

with 4, (h) = 44 (—h) for h=0,1,...,n — 1.



e The sample cross-covariance function:

h

(Yerni — M) (Yej — My5) (3)
1

n

SRS

Yij (h) =

t

with ’A}/ij (h) = ’A}/ji (—h) for h = 0,1,...,”— 1.

e The sample autocorrelation function:

;i (h) =
pii (h) 5

e The sample cross-correlation function:

ij (h)

P ) = 0 0)

(5)

In practice, we might want to ask how different our estimates of the sample cross-
correlation function p;; (h) are from what we would expect if either y, or y; are white
noise time series with no autocorrelation at all, i.e. if p;; (h) = 0 for all h # 0. We can get

a handle on this using the following result:

iid. iid.
If y; = wy; where wy ~ (0,0u,4) Or y; = wy where wy ~ N (0,0,;) for

t =1,...n, then p;; (h) ~ v/y/n, for h =1,... H, where v ~ N (0,1) and H is fixed

but arbitrary.

This result allows us to perform an approximate test of the null hypothesis that p;; (h) =0

for any i > 1 and any pair of time series, y; and y,!



