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The material in this set of notes is based on S&S 1.1-1.6.

Suppose we observe a multivariate time-series, i.e. an n × r matrix of r time series

observed simultanously:

Y =

(
y1 . . . yr

)
=


y11 . . . y1r
...

. . .
...

yn1 . . . ynr

 = M y +W ,

where Mx is a fixed but unknown mean, W are random errors, and elements of each column

of Y denoted by yi are ordered in time.

A multivariate time series is characterized by its mean function my,ij = E [yij] and co-

variance function γij (s, t) = Cov (ysi, ytj).

• When i = j, this is the autocovariance function of time series yi.

• When i ̸= j, we call this the cross-covariance function of the time series yi and yj.

The correlation function can be derived from the covariance function: ρij (s, t) =
γij(s,t)√

γii(s,s)γjj(t,t)
,

like its univariate counterpart the correlation function’s values are between −1 and 1.

• When i ̸= j, we call this the cross-correlation function of the time series yi and yj.

As in the univariate case, characterizing a time series in this way is too complicated and

involves too many parameters, because the mean and covariance functions depend on the
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values s and t themselves. This leads us back to the idea of stationarity. A multivariate

time series is jointly stationary if:

• The second moments of yti are finite for all of the time series, i.e. E [y2ti] < ∞ for all t

and i = 1, . . . , r.

• The mean function is constant for each time series and does not depend on time,

my,ti = my,i.

• The autocovariance function γii(s, t) depends on s and t only through their absolute

difference h = |s− t| for all i = 1, . . . , r.

• The cross-covariance function γij(s, t) depends on s and t only through their difference

h = s− t for all i = 1, . . . , r.

As in the univariate case, when a time series is stationary, its autocovariance and auto-

correlation functions can be written as functions of a single variable h. For this reason, we

will drop the second arguments of the autocovariance and autocorrelation functions when a

time series is stationary, writing γij (h) = γij (h, 0) and ρij (h) = ρij (h, 0).

When we observe a time series Y , we do not know the mean, autocovariance, or auto-

correlation functions a priori - we need to estimate them. When Y is stationary we can

compute:

• The sample mean function:

m̂y,i = ȳi =
n∑

t=1

yti/n. (1)

• The sample auto-covariance function:

γ̂ii (h) =
1

n

n−h∑
t=1

(yt+h,i − m̂y,i) (yti − m̂y,i) , (2)

with γ̂ii (h) = γ̂ii (−h) for h = 0, 1, . . . , n− 1.
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• The sample cross-covariance function:

γ̂ij (h) =
1

n

n−h∑
t=1

(yt+h,i − m̂y,i) (ytj − m̂y,j) , (3)

with γ̂ij (h) = γ̂ji (−h) for h = 0, 1, . . . , n− 1.

• The sample autocorrelation function:

ρ̂ii (h) =
γ̂ii (h)

γ̂ii (0)
. (4)

• The sample cross-correlation function:

ρ̂ij (h) =
γ̂ij (h)√

γ̂ii (0) γ̂jj (0)
(5)

In practice, we might want to ask how different our estimates of the sample cross-

correlation function ρ̂ij (h) are from what we would expect if either yi or yj are white

noise time series with no autocorrelation at all, i.e. if ρij (h) = 0 for all h ̸= 0. We can get

a handle on this using the following result:

If yti = wti where wti
i.i.d.∼ N (0, σw,ii) or ytj = wtj where wtj

i.i.d.∼ N (0, σw,jj) for

t = 1, . . . n, then ρ̂ij (h) ≈ v/
√
n, for h = 1, . . . H, where v ∼ N (0, 1) and H is fixed

but arbitrary.

This result allows us to perform an approximate test of the null hypothesis that ρij (h) = 0

for any h > 1 and any pair of time series, yi and yj!
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