
Introduction and Review

September 3, 2024

The material in this set of notes was initially based on Chapter 2 of Robert Shumway

and David Stouffer’s Time Series Analysis and Its Applications: With R Examples, but has

since grown to include additional material. Notes on the parametric bootstrap are based

on Efron and Tibshirani’s 1993 textbook An Introduction to the Bootstrap. Chapter 7 of

Simon Wood’s Core Statistics is also a helpful and relevant reference.

Notation

• E[x] refers to the expectation of x;

• V[x] refers to the variance of x;

• Z refers to the set of all positive and negative integers, Z = {0,±1,±2, . . . };

• Bolded lowercase letters denote column vectors;

• Bolded uppercase letters denote matrices;

• x ∼ N (µ, σ2) indicates that x is normally distributed with mean µ and variance σ2;

– Another way of writing this is x = σv + µ, where v ∼ N (0, 1). I will sometimes

use this notation to describe the distribution of x.
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• x ∼ Tk indicates that x is central t-distributed with k degrees of freedom;

• x ∼ χ2
k indicates that x is chi-square distributed with k degrees of freedom;

• x ∼ Fk,j indicates that x is central F -distributed with k and j degrees of freedom.

• ||x||22 =
∑n

i=1 x
2
i ;

• x ≈ y denotes that x is approximately equal to y.

• 1{x=1} and (x = 1) are two different ways that I will denote an indicator function,

which is equal to 1 if the statement contained in the brackets {·} or parentheses (·) is

true and equal to 0 otherwise.

Basic Idea!

Most (univariate) time series analysis problems boil down to observing an n × 1 vector

y = (y1, . . . , yn) = µ+ϵ, where µ is a fixed but unknown mean and ϵ are mean zero random

errors, and:

• Estimating µ;

• Predicting future values yn+1, . . . , yn+k.

Time series analysis problems differ from classical statistical problems because elements of y

are ordered in time. Several examples of time series data and problems are given in Chapter

1 of S&S, pages 4-11.

Because elements of y are ordered in time, consecutive elements of y may be correlated

and classical statistical methods may not work well. This is easiest to see via example.

Suppose we assume µx,t = µ for all t = 1, . . . , n, and we are interested in estimating µ.

Ignoring the time series aspect of y, we assume ϵj are independent and identically distributed

with known variance σ2. The classical approach would be to compute a point estimate of µ,

µ̂ =
∑n

t=1 yt/n with variance σ2/n. Is this accurate?
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The classical approach gives a incorrect variance of µ̂ if elements of y are correlated.

What would be the correct variance?

E
[
(µ̂− µ)2

]
=E

( n∑
t=1

yt − µ

)2

/n2


=σ2/n+

n∑
t=1

n∑
t′=1,t′ ̸=t

E [(yt − µ) (yt′ − µ)] /n2.

The correct variance depends on covariances of elements of y,

E [(yt − µ) (yt′ − µ)] = E [ϵtϵt′ ] ,

which may be nonzero if elements of y are ordered in time!

Regression Review (S&S 2.1-2.2)

Many methods for time series analysis build on linear regression. We perform linear

regression when we are interested in expressing an n × 1 response vector y as a linear

function of r n × 1 covariate vectors x1, . . . ,xr, i.e. we want to find regression coefficients

β1, . . . , βr such that y ≈ β1x1 + · · · + βrxr. If y is a time series, then covariates might

include:

• Indicators for distinct time periods different elements of y belong to;

• A vector t, where ti is the time yi was observed or the order of yi in the sequence;

• Nonlinear functions of elements of t, e.g. zij = sin (t) for some j ∈ {1, . . . , p};

• Lagged values of y;

• Lagged values of a different but related time series.

We will very rarely be able to describe y as an exactly linear function of x1, . . . ,xr.

Instead, we try to find the “best” way of writing y as a nearly linear function of x1, . . . ,xr
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by computing the regression coefficients β that solve:

minβ ||y − β1x1 − · · · − βrxr||22 . (1)

This is easier to express concisely in matrix form. Letting X = [x1, . . . ,xr] be the n× r

matrix of regression coefficients, β equivalently solves:

minβ ||y −Xβ||22 . (2)

We refer to the quantity ||y −Xβ||22 as the residual sum of squares (RSS), as it

measures how much of the variability of y remains after subtracting off a linear function of

the covariates. We can minimize (2) by differentiating; the minimizing value β̂ will satisfy:

X ′Xβ̂ −X ′y = 0 =⇒ X ′Xβ̂ = X ′y.

If the matrix X is full rank with rank r, then the minimizing value is

β̂ = (X ′X)
−1

X ′y. (3)

If we want to say more about β̂, we need to make some more assumptions. First, note that

we can always decompose the observed response y into a linear part Xβ and a remainder ϵ:

y = Xβ + ϵ. (4)

If we assume:

• E [ϵ] = 0, then β̂ is unbiased, i.e. E
[
β̂
]
= β.

• ϵj
i.i.d.∼ N (0, σ2), then:

(⋆) β̂ is the maximum likelihood estimator of β;

(∗) β̂ ∼ normal
(
β, σ2 (X ′X)

−1
)
, which impliesXβ̂ ∼ normal

(
Xβ, σ2X (X ′X)

−1
X ′
)
;

(†) y −Xβ̂ ∼ normal
(
0, σ2

(
In −X (X ′X)

−1
X ′
))

;

(◦) β̂ and y −Xβ̂ are independent.
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Time series methods rely extensively on likelihood based inference, so we pause to derive

(⋆). If ϵj
i.i.d.∼ normal (0, σ2) then rearranging (4) gives yi − x′

iβ
i.i.d.∼ normal (0, σ2), where xi

is the i-th row of X. This yields the likelihood:

l
(
y|X,β, σ2

)
=

n∏
i=1

1√
2πσ2

exp

{
− 1

2σ2
||y −Xβ||22

}
.

Finding the value of β that maximizes the likelihood is equivalent to finding the value of β

that minimizes the negative log likelihood, which corresponds to a constant plus the residual

sum of squares (2). As a side note - we can actually eliminate σ2 from the log-likelihood

by profiling it out, thus making the connection between maximizing the log likelihood and

computing the residual sum of squares even clearer. The negative log-likelihood is given by:

n

2
log
(
2πσ2

)
+

1

2σ2
||y −Xβ||22 .

We want to minimize this with respect to β and σ2, and this can be achieved by first mini-

mizing over σ2 for fixed β, and plugging in the minimizing value of σ2 to get a minimization

problem that depends on β alone. This takes advantage of the observation that:

minσ2,β

n

2
log
(
2πσ2

)
+

1

2σ2
||y −Xβ||22 = maxβ

(
maxσ2

n

2
log
(
2πσ2

)
+

1

2σ2
||y −Xβ||22

)
.

There’s a nice closed form solution to the minimization with respect to σ2 for fixed β. Taking

derivatives with respect to σ2 and rearranging, we get:

n

2σ2
− 1

2σ4
||y −Xβ||22 = 0 =⇒ σ2 =

||y −Xβ||22
n

.

Then plugging this expression for the minimizing value of σ2 for fixed β, we get a minimiza-
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tion problem over just β:

minσ2,β

n

2
log
(
2πσ2

)
+

1

2σ2
||y −Xβ||22 = minβ

(
minσ2

n

2
log
(
2πσ2

)
+

1

2σ2
||y −Xβ||22

)
= minβ

(n
2

)
log

(
2π

(
||y −Xβ||22

n

))
+

||y −Xβ||22
2
(

||y−Xβ||22
n

)
= minβ

(n
2

)
log

(
2π

(
||y −Xβ||22

n

))
+

n

2
.

Now only one term depends on the residual sum of squares ||y −Xβ||22, and since log (·)

is a strictly increasing function, this is equivalent to minimizing the residual sum of squares.

This isn’t very useful to us now, because the log-likelihood is already easy to maximize, and

because the maximum likelihood estimate of β does not depend on σ2. However we will find

the idea of profiling very useful when we start considering maximum likelihood estimation

for time series models, in which elements of the error vector ϵ are correlated and we have

more parameters to optimize over.

Returning to the claims we can make about the least squares estimate β̂ when we assume

that ϵj
i.i.d.∼ N (0, σ2), (∗), (†), and (◦) are very useful. They allow us not only to compute

standard errors for β̂ and confidence intervals for β but also to test the null hypothesis that

βi is exactly equal to a specific value or that a subset of r−r1 elements β−1 =
(
βt1 , . . . , βtr−r1

)
are jointly exactly equal to 0.

Standard practice for constructing standard errors and confidence intervals is to use (∗),

plugging in an unbiased estimator of the variance:

s2 =

∣∣∣∣∣∣y −Xβ̂
∣∣∣∣∣∣2
2

n− r
. (5)

Note that this is not the maximum likelihood estimate of σ2 - the maximum likelihood

estimator σ̂2 =
∣∣∣∣∣∣y −Xβ̂

∣∣∣∣∣∣2
2
/n is biased.
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It follows from (∗), (†), and (◦) that

β̂i − βi

s
√

(X ′X)
−1
ii

∼ Tn−r. (6)

This gives us a way of testing the null hypothesis that βi is exactly equal to a specific value

because it tells us the approximate distribution of β̂i for specific values of βi. We call such

tests t-tests or z-tests.

Similarly, letting X1 =
[
xt1 , . . . ,xtr1

]
be the design matrix containing the r1 columns

corresponding to elements of β1 and letting β̂1 be the linear regression estimate of β1 from

regressing y on just the r1 columns of X contained in X1, it follows from (∗), (†), and (◦)

that

Fr−r1,n−r =


∣∣∣∣∣∣y −X1β̂1

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣y −Xβ̂

∣∣∣∣∣∣2
2∣∣∣∣∣∣y −Xβ̂

∣∣∣∣∣∣2
2

( n− r

r − r1

)
∼ Fr−r1,n−r. (7)

This gives us a way of testing the null hypothesis that the r− r1 elements of β−1 are jointly

exactly equal to 0 by giving us an approximate distribution of Fr−r1,n−r under the null. We

call such tests F -tests.

Parametric Bootstrap for Standard Errors, Confidence Intervals, and Testing

The derivation of standard errors, confidence intervals, and testing given above are all based

on the model

y = Xβ + ϵ, ϵ ∼ normal
(
0, σ2In

)
. (8)

In all cases, we are computing quantities that tell us about the expected variability of a

function of the data y and X across repeated realizations of data y, assuming a model of

the form (8) holds. In general, we’ll denote the quantity we are interested in understanding

the expected variability of as c = g (y,X).

For example, when we are interested in computing the standard error of β̂j, we would

be interested in understanding the variability of c = g (y,X) = β̂j. As another example,
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if we were interested in testing the null hypothesis that βj = 0, we would be interested in

understanding the variability of c = g (y,X) = β̂i

s
√

(X′X)−1
ii

.

A natural approach is to simulate synthetic realizations of the observed data from the

approximate model,

y = Xβ̂ + ϵ, ϵ ∼ normal
(
0, s2In

)
, (9)

plugging in our estimates β̂ and s2 for the unknown parameters β and σ2. This approach is

commonly referred to as the Parametric Bootstrap, and it is especially useful when we are

interested in understanding the expected variability of functions of the unknown parameters

for which the distribution under (8) is either only known approximately, e.g. for large n

relative to r, or is not known at all. Intuitively, the parametric bootstrap will work well as

long as β̂ and s2 are “good enough” estimates of β and σ2 and as long as the distribution

of the quantity we are interested c in does not vary “too much” as a function of β and σ2.

In practice, the parametric bootstrap proceeds as follows:

• Estimate β and σ2 from the model given by (8), and compute c = g (y,X).

• Set a desired number of bootstrap samples, nboot.

• For k in 1, . . . , nboot:

– Draw y(k) ∼ normal
(
Xβ̂, s2In

)
;

– Compute c(k) = g
(
y(k),X

)
.

This procedure produces nboot simulated values of the quantity of interest c(1), . . . , c(nboot)

from the approximate model given by (9), which can be used for many purposes!

• An estimate of the standard error of c can be obtained by computing the sample

standard deviation of the simulated values c(1), . . . , c(nboot).

• An approximate level-α test of the null hypothesis that c is equal to zero under the
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model (9) can be obtained by comparing c to the α/2 and 1 − α/2 quantiles of the

simulated values c(1), . . . , c(nboot).

– This is not the only or best way to construct a 1 − α interval for a quan-

tity c based on bootstrap samples c(1), . . . , c(nboot), but it is very intuitive so

we will use it here. You can find more information about alternative methods

in Bootstrap Methods and their Applications (1997) by Davison and Hinkley, or

other more recent textbooks or papers on the construction of bootstrap-based

confidence intervals.

Model Selection Tests are very useful for model selection, i.e. for choosing the co-

variates to include in our model. Model selection is especially relevant in linear regression

methods for time series analysis, e.g. we may need to decide which lagged values of y to in-

clude as covariates. Letting Xr refer to a matrix containing r covariates and βr and β̂r the

corresponding regression coefficients and their linear regression estimates, several popular

methods for performing model selection when performing linear regression are:

(∗) Perform an t- or z-test comparing nested models with r and r′ = r + 1 covariates.

(∗) Perform an F -test comparing nested models with r and r′ covariates where the columns

in Xr are be a subset of the columns in Xr′ or vice versa.

(⋆) Compute Akaike’s Information Criterion (AIC)

AIC = ln


∣∣∣∣∣∣y −Xrβ̂r

∣∣∣∣∣∣2
2

n

+
n+ 2r

n
(10)

for models with r and r′ covariates, and choose the model with the lower AIC value.
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(⋆) Compute AIC, Bias Corrected (AICc)

AICc = ln


∣∣∣∣∣∣y −Xrβ̂r

∣∣∣∣∣∣2
2

n

+
n+ r

n− r − 2
(11)

for models with r and r′ covariates, and choose the model with the lower AICc value.

(⋆) Compute Schwarz’s/Bayesian Information Criterion (SIC/BIC)

SIC = ln


∣∣∣∣∣∣y −Xrβ̂r

∣∣∣∣∣∣2
2

n

+
rlog (n)

n
(12)

for models with r and r′ covariates, and choose the model with the lower SIC value.

(⋆) Choose any measure of model performance measured on some held-out data that was

not used to estimate β, denoted as f (ytest,X test,β), define several equally sized, pos-

sibly overlapping subsets of the data (training datasets), for each subset fit the models

and evaluate the performance of each model on the remaining data (test data), and

choose the model that performs best on average across all of the training datasets.

This is commonly referred to as cross-validation. There are many different ways of

performing cross-validation:

– Leave-k-out cross-validation refers to a type of cross-validation that constructs

l test data sets by choosing k elements of the full data, and constructing the

training data to be the full data with the k chosen elements removed, and letting

the the test data be the chosen k elements. In this case, the average measure of

performance is an average across l test data sets.

∗ When k = 1, we will often set l = n because there are n ways to remove a

single observation from the full data. When k > 1, we will often set l <
(
n
k

)
and choose the l subsets of k elements each at random, because it can become

computationally prohibitive to average across all
(
n
k

)
possible ways to remove

k observations from the full data.
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– k-fold cross-validation refers to a type of cross-validation that forms k training

datasets by dividing the data into k subsets of size n/k, and then defining each

test dataset to be one of the subsets of n/k observations in the full data, and each

training dataset as the remaining observations. In this case, the average measure

of performance is an average across k training data sets.

∗ This corresponds to leave-
(

n
n/k

)
-out cross-validation with l = k total sub-

sets/training datasets.

– A common measure of performance is squared error loss,

f (ytest,X test,β) = ||ytest −X testβ||22.

Note that the methods marked with (∗) require that the two models be nested, i.e. the

columns in Xr must be a subset of the columns in Xr′ or vice versa. The procedures

denoted with (⋆) are not. Whether AIC, AICc, or BIC is most appropriate for a given

problem is problem-specific; AICc can perform better than AIC when n is relatively small,

and SIC/BIC can perform better than AIC when the number of covariates k is relatively

large. Cross-validation also does not require that the two models be nested, and can be

performed in many different ways depending on the choice of k and the choice of a measure

of model performance. A very popular choice is 10-fold cross-validation using squared error

loss to measure performance on the test data, f (ytest,X test,β) = ||ytest −X testβ||22.
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