Basic Time Series Concepts
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The material in this set of notes was initially based on Sections 1.1-1.6 of Robert Shumway

and David Stouffer’s Time Series Analysis and Its Applications: With R Examples

Suppose we observe an n x 1 vector y = (y1,...,Yn) = w, + €, where p, is a fixed but
unknown mean, € are random errors and elements of y are ordered in time. We will refer
to y as a time series, although the sequence of elements can also be called a stochastic
process.

The joint distribution function of y is
F(c,...,cn) =P <c1yeo oy Yn < ).

Often, this will be difficult to write out and work with, so it does not provide a useful means

of characterizing a time series y. Instead, we often characterize a time series y via its:

e Mean Function: s, = Ely] = [*_yfi(y)dy, where f,(y) is the marginal density of

y; having integrated out all other elements of y.
e Autocovariance Function: v,(s,t) = E[(ys — fty.s) (Yt — pty+)] for all s and t.

— When s = ¢, gives the variance 7,(s, s) = V[y,].

e Autocorrelation Function: p,(s,t) = v,(s,t)/v/7y(s, $)y(t,t) for all s and ¢.



Without further assumptions, this is still an unwieldy way to characterize a time series
because the mean function depends on ¢ and the autocovariance and autocorrelation func-
tions depend on both s and ¢t. To simplify things further, we often assume that the time

series is either:

e Strongly Stationary: The distribution of any subset of k elements of (y;,, ...,y ) is

exactly the same as the distribution of the shifted set of k elements (ys,1n, - -, Yt,+n)-

— The mean function p,; does not depend on t: ji,; = Elyt] = Elyiin] = ty14n-

— The autocovariance function +,(s,t) depends on s and ¢ only through their abso-

lute difference h = |s — t|:

V(s 4 h, 8) =E[(Ysrn — tiy) (Ys — 1))
=E[(yn — p1y) (Yo — pty)]

=v(h,0).

e Weakly Stationary: The second moments of y; are finite, i.e. E[y?] < oo for
all ¢, the mean function is constant and does not depend on time, pu,; = p,, and
the autocovariance function 7,(s,t) depends on s and ¢ only through their absolute

difference h = |s — t|.

Note that although strong stationarity with finite second moments E [y?] < oo implies weak
stationarity, the reverse does not hold. Strong stationarity is usually too strict to be a
reasonable assumption, so from here on out we will call a time series stationary if it is
weakly stationary.

When a time series is stationary, its autocovariance and autocorrelation functions can be
written as functions of a single variable h. For this reason, we will drop the second arguments

of the autocovariance and autocorrelation functions when a time series is stationary, writing

Yy (h) =7, (h,0) and p, (h) = p, (h,0).



When we observe a time series y, we do not know the mean, autocovariance, or auto-
correlation functions a priori - we need to estimate them. When vy is stationary we can

compute:

e The sample mean function:
iy =79=Y yu/n. (1)
t=1

e The sample autocovariance function:

1 n—h

Yy (h) = " Z Wern = fy) (e — i) 5 (2)

with 4, (—=h) =4, (h) for h=0,1,...,n — L.

— We divide by n and not n — h to ensure that the sample variance of a sum of
elements of y computed from the n x n sample autocovariance matrix with entries

A (i — j) will always be nonnegative.

— This is a biased estimate of 7, (h).

e The sample autocorrelation function:

py (h) = 5 (3)

When we examine a sample autocorrelation function, it is natural to ask how different
our estimates of the sample autocorrelation are from what we would might expect if y were
a white noise time series with no autocorrelation at all, i.e. if p, (h) = 0 for all A # 0. We

can get a handle on this using the following result:

If y = p, + € where p, = 0 and ¢; RS N (0,02) for i = 1,...n, then p, (h) =~ v/\/n,
for h=1,... H, where v ~ N (0,1) and H is fixed but arbitrary.

This result allows us to perform an approximate test of the null hypothesis that p, (h) =0

for any h > 1.



