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The material in this set of notes was initially based on Sections 1.1-1.6 of Robert Shumway

and David Stouffer’s Time Series Analysis and Its Applications: With R Examples

Suppose we observe an n × 1 vector y = (y1, . . . , yn) = µy + ϵ, where µy is a fixed but

unknown mean, ϵ are random errors and elements of y are ordered in time. We will refer

to y as a time series, although the sequence of elements can also be called a stochastic

process.

The joint distribution function of y is

F (c1, . . . , cn) = P (y1 ≤ c1, . . . , yn ≤ cn) .

Often, this will be difficult to write out and work with, so it does not provide a useful means

of characterizing a time series y. Instead, we often characterize a time series y via its:

• Mean Function: µy,t = E[yt] =
∫∞
−∞ yft(y)dy, where ft(y) is the marginal density of

yt having integrated out all other elements of y.

• Autocovariance Function: γy(s, t) = E[(ys − µy,s)(yt − µy,t)] for all s and t.

– When s = t, gives the variance γy(s, s) = V[ys].

• Autocorrelation Function: ρy(s, t) = γy(s, t)/
√

γy(s, s)γy(t, t) for all s and t.
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Without further assumptions, this is still an unwieldy way to characterize a time series

because the mean function depends on t and the autocovariance and autocorrelation func-

tions depend on both s and t. To simplify things further, we often assume that the time

series is either:

• Strongly Stationary: The distribution of any subset of k elements of (yt1 , . . . , ytk) is

exactly the same as the distribution of the shifted set of k elements (yt1+h, . . . , ytk+h).

– The mean function µy,t does not depend on t: µy,t = E[yt] = E[yt+h] = µy,t+h.

– The autocovariance function γy(s, t) depends on s and t only through their abso-

lute difference h = |s− t|:

γ(s+ h, s) =E[(ys+h − µy)(ys − µy)]

=E[(yh − µy)(y0 − µy)]

=γ(h, 0).

• Weakly Stationary: The second moments of yt are finite, i.e. E [y2t ] < ∞ for

all t, the mean function is constant and does not depend on time, µy,t = µy, and

the autocovariance function γy(s, t) depends on s and t only through their absolute

difference h = |s− t|.

Note that although strong stationarity with finite second moments E [y2t ] < ∞ implies weak

stationarity, the reverse does not hold. Strong stationarity is usually too strict to be a

reasonable assumption, so from here on out we will call a time series stationary if it is

weakly stationary.

When a time series is stationary, its autocovariance and autocorrelation functions can be

written as functions of a single variable h. For this reason, we will drop the second arguments

of the autocovariance and autocorrelation functions when a time series is stationary, writing

γy (h) = γy (h, 0) and ρy (h) = ρy (h, 0).
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When we observe a time series y, we do not know the mean, autocovariance, or auto-

correlation functions a priori - we need to estimate them. When y is stationary we can

compute:

• The sample mean function:

µ̂y = ȳ =
n∑

t=1

yt/n. (1)

• The sample autocovariance function:

γ̂y (h) =
1

n

n−h∑
t=1

(yt+h − µ̂y) (yt − µ̂y) , (2)

with γ̂y (−h) = γ̂y (h) for h = 0, 1, . . . , n− 1.

– We divide by n and not n − h to ensure that the sample variance of a sum of

elements of y computed from the n×n sample autocovariance matrix with entries

γ̂ (i− j) will always be nonnegative.

– This is a biased estimate of γy (h).

• The sample autocorrelation function:

ρ̂y (h) =
γ̂y (h)

γ̂y (0)
. (3)

When we examine a sample autocorrelation function, it is natural to ask how different

our estimates of the sample autocorrelation are from what we would might expect if y were

a white noise time series with no autocorrelation at all, i.e. if ρy (h) = 0 for all h ̸= 0. We

can get a handle on this using the following result:

If y = µy + ϵ where µy = 0 and ϵi
i.i.d.∼ N (0, σ2

ϵ ) for i = 1, . . . n, then ρ̂y (h) ≈ v/
√
n,

for h = 1, . . . H, where v ∼ N (0, 1) and H is fixed but arbitrary.

This result allows us to perform an approximate test of the null hypothesis that ρy (h) = 0

for any h > 1.
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