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The material in this set of notes is based on S&S Chapter 3, specifically 3.1-3.2. We’re

finally going to define our first time series model! , The first time series model we will

define is the autoregressive (AR) model. We will then consider a different simple time

series model, the moving average (MA) model. Putting both models together to create

one more general model will give us the autoregressive moving average (ARMA) model.

The AR Model

The first kind of time series model we’ll consider is an autoregressive (AR) model. This

is one of the most intuitive models we’ll consider. The basic idea is that we will model the

response at time t, yt, as a linear function of its p previous values and some independent

random noise, e.g.

yt = 0.5yt−1 + wt, (1)

where yt is stationary and wt
i.i.d.∼ N (0, σ2

w). This kind of model is especially well suited to

forecasting, as

E [yt+1|yt] = 0.5yt−1. (2)
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We explicitly define an autoregressive model of order p, abbreviated as AR (p) as:

(yt − µ) = ϕ1 (yt−1 − µ) + ϕ2 (yt−2 − µ) + · · ·+ ϕp (yt−p − µ) + wt, (3)

where ϕp ̸= 0, yt is stationary with mean E [yt] = µ, and wt
i.i.d.∼ N (0, σ2

w). For convenience:

• We’ll often assume µ = 0, so

yt = ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + wt. (4)

• We’ll introduce the autoregressive operator notation:

ϕ (B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p, (5)

where Bpyt = yt−p is the backshift operator. This allows us to rewrite (3) and (4)

more concisely as ϕ (B) (yt − µ) = wt and

ϕ (B) (yt) = wt, (6)

respectively.

An AR (p) model looks like a linear regression model, but the covariates are also random

variables. We’ll start building an understanding of the AR (p) model by starting with the

simpler special case where p = 1.

The AR (1) model with µ = 0 is a special case of (3)

yt = ϕ1yt−1 + wt. (7)

A natural thing to do is to try to rewrite yt as a function of ϕ1 and the previous values

of the random errors. Then (7) will look more like a classical regression problem, as it will

no longer have random variables as as covariates. Furthermore, if we could rewrite yt as a

function of ϕ1 and the random errors w, then yt would be a causal linear process.

A causal linear process yt is defined to be a linear combination of white noise wt and
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is given by

yt = µ+
∞∑
j=0

ψjwt−j,

where the coefficients satisfy
∑∞

j=0 |ψj| <∞, wt are independent and identically distributed

with mean 0 and variance σ2
w, and µ = E [yt] < ∞. This is called a causal linear process

because yt only depends on past and present values of white noise, i.e. we can think of

the present and past values of the white noise wt, wt−1, wt−2, . . . as causing the variability

we observe in yt. The condition
∑∞

j=0 |ψj| < ∞ ensures that each yt has finite variance

V [yt] = σ2
w

∑∞
j=0 ψ

2
j < ∞, the same probability distribution, and decaying autocorrelations

ρy (h) → 0 as h → ∞. Importantly, it can be shown that the autocovariance function of a

causal linear process is

γy (h) = σ2
w

∞∑
j=0

ψj+hψj, (8)

for h ≥ 0, recalling that γy (h) = γy (−h). This also means that once we know the linear

process representation of any time series process, we can easily compute its autocovariance

(and autocorrelation) functions. We will often use the infinite moving average operator

shorthand 1 + ψ1B + ψ2B
2 + . . . ψjB

j + · · · = ψ (B).

We can start rewriting yt as follows:

yt = ϕ2
1yt−1 + ϕ1wt−1 + wt

= ϕ3
1yt−2 + ϕ2

1wt−2 + ϕ1wt−1 + wt

= ϕk
1yt−k︸ ︷︷ ︸
(∗)

+
k−1∑
j=0

ϕj
1wt−j.

We can see that we can almost take the lagged values of y out of the right hand side.

Fortunately, when |ϕ1| < 1, then

limk→∞E

(yt − k−1∑
j=0

ϕj
1wt−j

)2
 = limk→∞ϕ

2kE
[
y2t−k

]
= 0,
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because E
[
y2t−k

]
is constant as long as yt is stationary is assumed. This means that when

|ϕ1| < 1, then we can write elements of the response yt as a linear function the previous

values of the random errors:

yt =
∞∑
j=0

ϕjwt−j. (9)

(9) is the causal linear process representation of an AR (1) model. It follows that the

autocovariance function

γy (h) = σ2
w

∞∑
j=0

ϕj+h
1 ϕj

1

= σ2
wϕ

h
1

∞∑
j=0

ϕ2j
1

= σ2
wϕ

h
1

(
1

1− ϕ2
1

)
. (10)

and the autocorrelation function is

ρy (h) = ϕh. (11)

Note that this is not the only way to compute the values of autocovariance function. We

could compute them directly from (4),

γy (h) =E [yt−hyt] (12)

=E [yt−h (ϕ1yt−1 + wt)]

=ϕ1E
[
yt−1−(h−1)yt−1

]
+ E [yt−hwt]

=ϕ1γy (h− 1) .

This gives us a recursive relation that we can use to compute the autocovariance function
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γy (h), starting from γy (0). We can compute γy (0) using substitution:

γy (0) =E
[
y2t
]

(13)

=E
[
y2t
]

=E
[
(ϕ1yt−1 + wt)

2]
=E

[
ϕ2
1y

2
t−1 + 2ϕ1wtyt−1 + w2

t

]
=ϕ2

1E
[
y2t−1

]
+ σ2

w

=σ2
w

∞∑
j=0

ϕ2j
1 (follows from continued substitution)

=
σ2
w

1− ϕ2
1

, if |ϕ1| < 1, γy (0) = ∞ otherwise!

If |ϕ1| < 1, then it is easy to see that the AR (1) model yt is stationary because the mean

of each yt is zero and the autocovariance function γy (h) = σ2
wϕh

(
1

1−ϕ2

)
depends only on the

lag, h, and is finite when h = 0, γy (0) <∞. What happens when |ϕ1| > 1? (9) does not have

a causal linear process representation if |ϕ1| > 1, and because γy (0) =
∑∞

j=0

∣∣ϕj
1

∣∣ = +∞, so

yt will not be a stationary process because it will not have finite variance.

Understanding when a AR (p) model is stationary is more difficult than understanding

when an AR (1) model is stationary. We figured out when an AR (1) model is stationary by

finding the coefficients ψ1, . . . , ψj of its causal linear process representation as a function of

the AR coefficient ϕ1, and showing that the squared sum of the coefficients
∑∞

j=0 |ψj| <∞.

The linear process representation is especially useful for an AR (p) model when p > 1,

because computing the autocovariance function γy (h) directly as we did in (12) and (13)

gets much more cumbersome when p > 1. We can see this in the AR (2) case, where we

have

yt = ϕ2yt−2 + ϕ1yt−1 + wt. (14)

We can get a recursive relation for the autocovariance function γy (h) starting from γy (0)
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and γy (1) as follows:

γy (h) =E [yt−hyt]

=E [yt−h (ϕ1yt−1 + ϕ2yt−2 + wt)]

=ϕ1E
[
yt−1−(h−1)yt−1

]
+ ϕ2E

[
yt−2−(h−2)yt−2

]
+ E [yt−hwt]

=ϕ1γy (h− 1) + ϕ2γy (h− 2) .

We can try to compute γy (0) and γy (1) using substitution:

γy (0) =E
[
y2t
]

=E
[
(ϕ1yt−1 + ϕ2yt−2 + wt)

2]
=E

[
ϕ2
1y

2
t−1 + ϕ2

2y
2
t−2 + 2ϕ1ϕ2yt−1yt−2 + 2ϕ1yt−1wt + 2ϕ2yt−2wt + w2

t

]
=E

[
ϕ2
1y

2
t−1 + ϕ2

2y
2
t−2 + 2ϕ1ϕ2yt−1yt−2

]
+ σ2

w

=
(
ϕ2
1 + ϕ2

2

)
γy (0) + 2ϕ1ϕ2γy (1) + σ2

w.

γy (1) =E [yt−1yt]

=E [yt−1 (ϕ1yt−1 + ϕ2yt−2 + wt)]

=E
[
ϕ1y

2
t−1 + ϕ2yt−1yt−2 + yt−1wt

]
=ϕ1γy (0) + ϕ2γy (1)

γy (1) =

(
ϕ1

1− ϕ2

)
γy (0) .
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γy (0) =
(
ϕ2
1 + ϕ2

2

)
γy (0) + 2 (ϕ1ϕ2)

(
ϕ1

1− ϕ2

)
γy (0) + σ2

w(
1− ϕ2 − ϕ2

1 − ϕ2
2 + ϕ3

2 − ϕ2
1ϕ2

1− ϕ2

)
γy (0) = σ2

w

γy (0) = σ2
w

(
1− ϕ2

1− ϕ2 − ϕ2
1 − ϕ2

2 + ϕ3
2 − ϕ2

1ϕ2

)
γy (1) = σ2

w

(
ϕ1

1− ϕ2 − ϕ2
1 − ϕ2

2 + ϕ3
2 − ϕ2

1ϕ2

)
Clearly, this gets very complicated, even though we only have two lags!

Unfortunately, it’s much harder to find the linear process representation of an AR (p)

model by simple substitution as we did with an AR (1) model. Substituting according to

(14)

yt =ϕ1ϕ2yt−3 +
(
ϕ2 + ϕ2

1

)
yt−2 + ϕ1wt−1 + wt

=
(
ϕ2 + ϕ2

1

)
ϕ2yt−4 + ϕ1

(
2ϕ2 + ϕ2

1

)
yt−3 +

(
ϕ2 + ϕ2

1

)
wt−2 + ϕ1wt−1 + wt

=
(
ϕ2 + ϕ2

1

)
ϕ2yt−4 + ϕ1

(
2ϕ2 + ϕ2

1

)
(ϕ2yt−5 + ϕ1yt−4 + wt−3) +

(
ϕ2 + ϕ2

1

)
wt−2 + ϕ1wt−1 + wt

=ϕ1ϕ2

(
2ϕ2 + ϕ2

1

)
yt−5 +

(
ϕ2
2 + ϕ2

1ϕ2 + 2ϕ1ϕ
2
2 + ϕ3

1ϕ2

)
yt−4+

ϕ1

(
2ϕ2 + ϕ2

1

)
wt−3 +

(
ϕ2 + ϕ2

1

)
wt−2 + ϕ1wt−1 + wt . . .

Again, this is not working out nicely!

Instead, we can find the values of ψ1, . . . , ψj, . . . that satisfy ϕ (B)ψ (B)wt = wt, which

follows from substituting yt =
∑∞

j=−∞ ψjwt−j into (20). This is equivalent to finding the

inverse function ϕ−1 (B) that satisfies ϕ (B)ϕ−1 (B)wt = wt.

We can see how this method for finding the values of ψ1, . . . , ψj, . . . works by returning

to the AR (1) case. The values ψ1, . . . , ψj, . . . that satisfy ϕ (B)ψ (B)wt = wt solve:

1 + (ψ1 − ϕ1)B + (ψ2 − ψ1ϕ1)B
2 + · · ·+ ψjB

j + . . . = 1, (15)

where (15) follows from expanding ϕ (B) and ψ (B). This allows us to recover the linear
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process representation of the AR (1) process in a different way, as (15) holds if all of the

coefficients for Bj with j > 0 are equal to zero, i.e. ψk − ψk−1ϕ1 = 0 for k > 1.

Now let’s try this approach for the AR (2) case. We have

1 =
(
1− ϕ1B − ϕ2B

2
) (

1 + ψ1B + ψ2B
2 + · · ·+ ψjB

j + . . .
)

=1 + (ψ1 − ϕ1)B + (ψ2 − ϕ2 − ϕ1ψ1)B
2 + (ψ3 − ϕ1ψ2 − ϕ2ψ1)B

3 + · · ·+

(ψj − ϕ1ψj−1 − ϕ2ψj−2)B
j + . . .

We see that we can compute the values of ψ1, . . . , ψj, . . . recursively,

ψ1 = ϕ1

ψ2 = ϕ2 + ϕ2
1

ψ3 = ϕ1

(
ϕ2 + ϕ2

1

)
+ ϕ2ϕ1

= ϕ1

(
2ϕ2 + ϕ2

1

)
= 2ϕ1ϕ2 + ϕ3

1

ψ4 = ϕ2
1

(
2ϕ2 + ϕ2

1

)
+ ϕ2

(
ϕ2 + ϕ2

1

)
= 3ϕ2

1ϕ2 + ϕ2
2 + ϕ4

1

ψ5 = ϕ3
1

(
2ϕ2 + ϕ2

1

)
+ ϕ1ϕ2

(
ϕ2 + ϕ2

1

)
+ ϕ1ϕ2

(
2ϕ2 + ϕ2

1

)
= 3ϕ3

1ϕ2 + ϕ1ϕ
2
2 + ϕ5

1 + 2ϕ1ϕ
2
2 + ϕ3

1ϕ2

= 4ϕ3
1ϕ2 + 3ϕ1ϕ

2
2 + ϕ5

1

ψ6 = 4ϕ4
1ϕ2 + 3ϕ2

1ϕ
2
2 + ϕ6

1 + 3ϕ2
1ϕ

2
2 + ϕ3

2 + ϕ4
1ϕ2

= 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2 + ϕ6

1 + ϕ3
2

and so on. Again, this is not working out nicely. In general, we won’t work with closed form

expressions for the autocovariance function of an AR (p) model with p > 1.

It’s also very tricky to figure out when AR (p) model is stationary for p > 1. An AR (p)
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model is stationary for p > 1 when all of the roots of the AR polynomial

ϕ (z) = 1− ϕ1z − · · · − ϕpz
p,

lie outside the unit circle, i.e. ϕ (z) ̸= 0 for |z| ≤ 1. This condition ensures that the∑∞
j=1 |ψj| < ∞. This is not very intuitive. If we want to try to get a handle on why

the roots of the AR polynomial need to lie outside the unit circle for a AR(p) model to be

stationary, we need to take a look at the proof. You won’t be tested on your understanding

of this - we’ll just go through it here in case you are curious following along the proof of

Theorem 3.2 in Chan (2010).

Let’s suppose that ϕ (z) has roots r1, . . . , rp that satisfy 1 < |r1| ≤ · · · ≤ |rp|, i.e.

ϕ (rj) = 0 for j = 1, . . . , p. Then this ensures that we can invert ϕ (z) when z ≤ |r1|.

Recalling that ψ (B) can be thought of as the inverse of ϕ (B), this means that

1

ϕ (z)
=

∞∑
j=0

ψjz
j <∞ if |z| ≤ |r1| ,

where ψ0 = 1. Then we can invert ϕ (z) at any value of z < |r1|, e.g. at z = 1 + δ < |r1|,

where δ > 0. Writing this out, we have

1

ϕ (1 + δ)
=

∞∑
j=0

ψj (1 + δ)j <∞. (16)

If (16), then there must be some constant M > 0 that gives an upper bound for all∣∣∣ψj (1 + δ)j
∣∣∣, i.e. ∣∣∣ψj (1 + δ)j

∣∣∣ ≤ M for all j = 0, 1, 2, . . . . Shifting things around, this is
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equivalent to |ψj| ≤M (1 + δ)−j. Then

∞∑
j=1

|ψj| ≤M
∞∑
j=1

(
1

1 + δ

)j

=M

(
∞∑
j=0

(
1

1 + δ

)j

− 1

)

=M

(
1

1− 1
1+δ

− 1

)
(follows from

1

1 + δ
< 1 if δ > 0)

=M

(
1 + δ

1 + δ − 1
− 1

)
=M

(
1

δ

)
<∞.

The MA Model

Instead of assuming that elements of a time series yt are linear function of previous elements

of the time series y1, . . . , yt−1 and independent, identically distributed noise wt, we might

assume that elements of a time series yt are a linear function of all of the current and previous

noise variates, w1, . . . , wt−1. The latter gives us the moving average model of order q,

abbreviated as MA (q). The MA (q) model is explicitly defined as

yt − µ = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q, (17)

where θq ̸= 0, E [yt] = µ, and wt
i.i.d.∼ N (0, σ2

w). For convenience:

• We’ll often assume µ = 0, so

yt = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q. (18)

• We’ll introduce the moving average operator notation:

θ (B) = 1 + θ1B + θ2B
2 + · · ·+ θpB

p, (19)

which allows us to rewrite (17) and (18) more concisely as yt − µ = θ (B)wt and

yt = θ (B)wt, (20)
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respectively.

Again, the MA (q) model looks like a linear regression model. Importantly, the MA (q)

model is stationary for any values of the parameters θ1, . . . , θq.

Like we did with the AR (p) model, we’ll start building an understanding of the MA (q)

by starting with the simpler special case where q = 1,

yt = θ1wt−1 + wt. (21)

It is easy to see that this MA (q) model is mean zero. We can compute the autocovariance

function as follows:

γy (h) = E [ytyt−h]

= E [(θ1wt−1 + wt) (θ1wt−h−1 + wt−h)]

= E
[
θ21wt−1wt−h−1 + θ1wtwt−h−1 + θ1wt−1wt−h + wtwt−h

]
= E

[
θ21wt−1wt−h−1 + θ1wt−1wt−h + wtwt−h

]

=


σ2
w (θ21 + 1) h = 0

θ1 h = 1

0 h > 1

. (22)

The corresponding autocorrelation function is

ρy (h) =


θ1

θ21+1
h = 1

0 h > 1
. (23)

The autocovariance and autocorrelation functions of the MA (q) model are noteworthy in

two ways:

(•) The autocorrelation function ρy (h) is bounded, ρy (h) ≤ 1/2 for h = 1.

(∗) The parameters of the MA (q) model do not uniquely determine the autocovariance

and autocorrelation function values. θ1 and σ2
w do not uniquely determine the value
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of the autocovariance function γy (h), and θ1 does not determine the value of the

autocorrelation function.

It is easiest to understand (∗) via some examples. First, we compute γy (h) and ρy (h) for a

MA (1) process with θ1 = 5 and σ2
w = 1,

γy (h) =


52 + 1 = 26 h = 0

5 h = 1

0 h > 1

and ρy (h) =


5

52+1
= 5

26
h = 1

0 h > 1
.

Compare this to γy (h) and ρy (h) for a MA (1) process with θ1 = 1/5 and σ2
w = 25,

γy (h) =


25
(

1
52

+ 1
)
= 25

(
1+25
25

)
= 26 h = 0

25
(
1
5

)
= 5 h = 1

0 h > 1

and ρy (h) =


1
5

1
52

+1
= 5

26
h = 1

0 h > 1
.

Both sets of MA (1) parameters give the values of the autocovariance and autocorrelation

functions! This is undesirable - it means that even if we know that our time series is mean

zero with a specific autocovariance function γy (h) autocorrelation function ρy (h), we can’t

find a unique pair of corresponding MA (1) parameter values (θ1, σ
2
w). /

We solve this problem by requiring that our MA(1) model be invertible, which means

that it has an infinite autoregressive representation (1 + π1B + π2B
2 + · · ·+ πjB

j + . . . ) yt =

wt with
∑∞

j=1 |πj| < ∞. We can find a unique pair of corresponding MA (1) parameter

values (θ1, σ
2
w) if we restrict our attention to the parameter values that give an invertible

MA (1) model. What we mean by this is that we can rearrange (21) to resemble a AR(1)
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model for wt,

wt =− θ1wt−1 + yt

=θ21wt−2 − θ1yt−1 + yt

=− θ31wt−3 + θ21yt−2 − θ1yt−1 + yt

=(−θ1)k wt−k +
k∑

j=0

(−θ1)j yt−j,

where limk→∞ (−θ1)k wt−k +
∑k

j=0 (−θ1)
j yt−j =

∑∞
j=0 (−θ1)

j yt−j. Recalling the AR(1)

model, this will be the case when |θ1| < 1. Going back to our example where we con-

sidered the MA (1) parameters (θ1, σ
2
w) = (5, 1) and (θ1, σ

2
w) =

(
1
5
, 25
)
, this means that only

the latter pair (θ1, σ
2
w) =

(
1
5
, 25
)
satisfy our definition of a MA (1) model.

More generally, requiring that an MA(q) model be invertible ensures that we can find

a unique set of corresponding MA (q) parameter values (θ1, . . . , θq, σ
2
w) if we know that

our time series is MA(q) with mean zero, a specific autocovariance function γy (h), and

autocorrelation function ρy (h). We introduce some additional notation for this; an MA(q)

model is invertible if we can write wt = π (B) yt, where π (B) = 1+ π1B+ · · ·+ πjB
j + . . .

and
∑∞

j=0 |πj| < ∞. This looks a lot like the problem of ensuring that a AR (p) model is

stationary, and it turns out that an MA (q) model is invertible if when all of the roots

of the MA polynomial

θ (z) = 1 + θ1z + · · ·+ θqz
q,

lie outside the unit circle, i.e. θ (z) ̸= 0 for |z| ≤ 1.
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The ARMA Model

The autoregressive moving average (ARMA)model combines theAR andMAmodels.

We define an ARMA(p, q) model as:

(yt − µ) = ϕ1 (yt−1 − µ) + · · ·+ ϕp (yt−p − µ) + θ1wt−1 + · · ·+ θqwt−q + wt, (24)

where wt
i.i.d.∼ N (0, σ2

w), yt is stationary, ϕp ̸= 0, θq ̸= 0, σ2
w > 0, and the MA and AR

polynomials θ (B) and ϕ (B) have no common roots. We refer to p as the autoregressive

order and q as the moving average order. Again, for convenience we will usually assume

µ = 0, so

yt = ϕ1yt−1 + · · ·+ ϕpyt−p + θ1wt−1 + · · ·+ θqwt−q. (25)

Using operator notation becomes especially beneficial for ARMA(p, q) models; we can just

write ϕ (B) yt = θ (B)wt instead of (25). Note that:

• Setting p = 0 gives a MA (q) model;

• Setting q = 0 gives an AR (p).

As with AR (p) and MA (q) models, we will need to figure out when an ARMA(p, q) is

stationary and invertible. Fortunately, this is simple given the work we’ve already done

for MA (q) and AR (p) models. An ARMA(p, q) is:

• Stationary, i.e. we can find ψ1, . . . , ψj, . . . such that ψ (z) =
∑∞

j=0 ψjz
j = θ(z)

ϕ(z)
that

satisfy
∑∞

j=0 |ψj| <∞ for |z| < 1, if ϕ (z) ̸= 0 for |z| ≤ 1;

• Invertible, i.e. we can find π1, . . . , πj, . . . such that π (z) =
∑∞

j=0 πjz
j = ϕ(z)

θ(z)
that

satisfy
∑∞

j=0 |πj| <∞ for |z| < 1, if θ (z) ̸= 0 for |z| ≤ 1.

Returning to the definition of an ARMA(p, q) model, it is not immediately obvious why

we require that the moving average and autoregressive polynomials θ (B) and ϕ (B) have no
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common roots. Consider the following model, which resembles an ARMA (p, q) model:

yt = 0.5yt−1 − 0.5wt−1 + wt, (26)

where yt is stationary and wt
i.i.d.∼ N (0, σ2

w). It’s easy to see that the mean function µ = 0.

The autocovariance function γy (h) satisfies:

γy (h) = E [ytyt−h]

= E [(0.5yt−1 − 0.5wt−1 + wt) yt−h]

= 0.5E [yt−1yt−h]− 0.5E [wt−1yt−h] + E [wtyt−h]

=

 0.5γy (0)− 0.5σ2
w h = 1

0.5γy (h− 1) h > 1
(27)

We just need to combine this with a starting value, γy (0):

γy (0) = E
[
y2t
]

= E
[
0.52y2t−1 + 0.52w2

t−1 + w2
t − (2) (0.5)2w2

t−1

]
= 0.52γy (0) +

(
1− 0.52

)
σ2
w =⇒ γy (0) = σ2

w

Plugging this in to (27), for h > 0 we get

γy (h) = 0!

This means that (26) is equivalent to the white noise model, yt = wt!

If we examine the corresponding AR and MA polynomials, we see that they share the

common factor 1 − 0.5B, θ (B) = 1 − 0.5B and ϕ (B) = 1 − 0.5B. Dividing each by

the common factor yields θ (B) = 1 and ϕ (B) = 1, which gives us the familiar definition

of the white noise model, yt = wt. This is why we require that the the moving average

and autoregressive polynomials θ (B) and ϕ (B) have no common roots, otherwise we could

mistake a white noise process for an ARMA(p, q) process with p, q > 0.

As with the AR (p) model, the linear process representation of an ARMA (p, q) model
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is especially useful for computing the autocovariance function of an ARMA (p, q) model.

Using the same approach we used for the AR (p) model, the values of ψ1, . . . , ψj, . . . that

satisfy yt = ψ (B)wt with
∑∞

j=0 |ψj| <∞ can be computed by substituting ψ (B)wt into

the equation that defines the ARMA (p, q) model, ϕ (B) yt, and matching the coefficients

for each power of B on each side, i.e.

ϕ (B)ψ (B)wt = θzwt

=⇒ (1− ϕ1B − . . . ϕpB
p)
(
1 + ψ1B + . . . ψjB

j
)
wt = (1 + θ1B + · · ·+ θqB

q)wt.

This yields a sequence of equations that would start with

ψ1 − ϕ1 = θ1

ψ2 − ϕ2 − ϕ1ψ1 = θ2,

and continue on for ψ3, . . . , ψj, . . . . We will not be computing ψ1, . . . , ψj, . . . by hand in

class - this requires a knowledge of differential equations that goes above and beyond the

prerequisites for this course. However, statistical software like R will often include functions

that can be used to compute the ψ1, . . . , ψK for some user specified value K > 1 given values

for ϕ1, . . . , ϕp and θ1, . . . , θp.
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