
Forecasting

September 3, 2024

The material in this set of notes is based on S&S Chapter 3, specifically 3.5. We’re going

to start by learning how to forecast future values of our time series, as if we knew the true

autocorrelation functions and/or ARMA(p, q) parameters.

General Time Series Forecasting

First, we going to talk about how we might forecast future values of a time series in general

just using knowledge of the autocovariance function. Without loss of generality, we’re always

going to assume a mean zero time series yt. Any stationary time series zt with nonzero and

known mean µ can be transformed to a mean zero time series by just subtracting off the

mean, yt = zt − µ.

To define a “good” forecast, we need to define (a) what “good” means and (b) what kind

of forecasts we’re interested in considering. Supposing that we observed a length-n time

series y, we define a “good” a forecast of observation ŷm+1 of the m+1-th observation ym+1

given all of the past values y1, . . . , ym to be one that minimizes the expected mean squared

error,

vm = E
[
(ym+1 − ŷm+1)

2] , (1)

1



and we consider forecasts that are linear functions of the observed values y1, . . . ym,

ŷm+1 =
m∑
j=1

cmjym+1−j, (2)

for some cm. The values depend on the length of the time series used to construct the

forecast.

Plugging (7) into (6), we get

E

(ym+1 −

(
m∑
j=1

cmjym+1−j

))2
 = E

[
y2m+1

]
+ c′mAmcm − 2c′mbm, (3)

where am,ij = γy (i− j) and bm,j = γy (j).

The optimal cm satisfy:

Amcm = bm, (4)

so we can obtain cm by inverting Am, i.e. cm = A−1
m bm.

Whenm is large, Am is going to be very computationally burdensome to invert, making it

computationally prohibitive to solve (9) for cm. Furthermore, we will often want to solve (9)

many times for m = 1, . . . , n in order to get all n one-step-ahead forecasts given an observed

n× times series y observed at n time points. Fortunately, there are two recursive algorithms

that allow us to use the coefficients cm and expected mean squared error vm obtained by

solving (9) to obtain the next set of coefficients cm+1 and expected mean squared error vm+1

for m = 2, . . . , n and to compute ŷm+1 without inverting Am.

• Durbin-Levinson: If yt is mean-zero and stationary and the autocovariance function

γy (h) satisfies γy (0) > 0 and γy (h) → 0 as h → ∞, then the coefficients cmj and

expected squared error losses vm (7) satisfy:

– c11 = ρy (1);

– v0 = γy (0);

– v1 = v0 (1− c211);

2



– cmm =
(
γy (m)−

∑m−1
j=1 c(m−1)jγy (m− j)

)
v−1
m−1;

– cmj = c(m−1)j − cmmc(m−1)(m−j);

– vm = vm−1 (1− c2mm).

We’re not going to prove why the Durbin-Levinson algorithm works in this class, it’s a

bit of a headache. The general idea is that assuming stationarity allows us to rewrite

each one-step-ahead prediction ŷm+1 in a convenient way. If you are interested in

understanding this better, see Brockwell and Davis (1991) Section 5.2.

• Innovations: The innovations algorithm takes advantage of the fact that we are

really only interested in computing the predictions ŷm+1, not the values of cm. Instead

of finding cm, the innovations algorithm produces predictions ŷm+1 that are a linear

function of prediction errors, yj − ŷj for j = 1, . . .m:

ŷm+1 =
m∑
j=1

dmj (ym+1−j − ŷm+1−j) . (5)

So, instead of computing cm we need to compute dm.

We note that, unlike the Durbin-Levinson algorithm, the innovations algorithm can be

used even if yt is not stationary. However, since we will just be dealing with station-

ary time series, we’ll describe how the innovations algorithm works in the stationary

case. The innovations algorithm works as long as the covariance matrix Am with

am,ij = γy (i− j) is invertible. We define ŷ1 = 0 and ŷk+1 =
∑k

j=1 dkj (yk+1−j − ŷk+1−j)

if k ≥ 1. The innovation algorithm sets:

– v0 = γy (0);

– dm(m−k) = v−1
k

(
γy (m− k)−

∑k−1
j=0 dk(k−j)dm(m−j)vj

)
for k = 0, 1, . . . ,m− 1;

– vm = γy (0)−
∑m−1

j=0 d2m(m−j)vj.

This lets us compute v0, then d11, then v1, then d22 and d21, and so on. Again,

remember that the innovation algorithm does not give the coefficients of the lagged

3



values y1, . . . , ym in (7), but rather the coefficients of the lagged prediction errors yj−ŷj

for j = 1, . . . ,m. Again, we’re not going to prove why the innovations algorithm works

in this class. The general idea is that yj− ŷj is orthogonal to yk− ŷk for k ̸= j, and that

that allows us to simplify computations. If you are interested in understanding this

better, this (like the Durbin-Levinson algorithm) is also covered in detail in Brockwell

and Davis (1991) Section 5.2.

Predicting More than One Step Ahead

Supposing that we observed a length-n time series y, we define a “good” a forecast of an

observation h units of time into the future, denoted by observation ŷ
(h)
m , given all of the past

values y1, . . . , ym to be one that minimizes the expected mean squared error,

v(h)m = E
[(
ym+h − ŷ(h)m

)2]
. (6)

Note that this generalizes one-step-ahead forecasting, which corresponds to h = 1. Again,

we consider forecasts that are linear functions of the observed values y1, . . . ym:

ŷ(h)m =
m∑
j=1

c
(h)
m,jym+1−j, (7)

for some c
(h)
m . The values depend on the length of the time series used to construct the

forecast and how many steps ahead the forecast is from the last observed time series value

ym.

Plugging (7) into (6), we get

E

(y(h)m −

(
m∑
j=1

c
(h)
mjym+1−j

))2
 = E

[(
y(h)m

)2]
+
(
c(h)m

)′
Am

(
c(h)m

)
− 2

(
c(h)m

)′
b(h)m , (8)

where am,ij = γy (i− j) and b
(h)
m,j = γy (j + h− 1).

4



The optimal c
(h)
m satisfy:

Amc
(h)
m = b(h)m , (9)

so we can obtain c
(h)
m by inverting Am, i.e. c

(h)
m = A−1

m b(h)m .

As with one-step-ahead forecasting, this can be burdensome to compute whenAm is large.

Fortunately, the innovations algorithm can be used to compute h-step ahead predictions. We

can write:

ŷm+h =
m+h−1∑
j=h

dm+h−1,j (ym+h−j − ŷm+h−j) .

Note that the observed time series values that appear in the sum are y1, . . . , ym. The inno-

vation coefficients dm+h−1,j are obtained using the same algorithm we discussed before.

ARMA (p, q) Time Series Forecasting

Now that we have some methods for forecasting time series in general using the autocovari-

ance function γy (h), we can talk about how to forecast future values of ARMA (p, q) time

series. This is easiest to understand in the context of the simplest possible ARMA (p, q)

models, the ARMA (1, 0) or AR (1) model and the ARMA (0, 1) or MA (1) model. To

make things even simpler, we’ll focus on forecasting y3.

First, let’s just compute the autocovariance function for the general ARMA (1, 1) model

given by:

yt = ϕ1yt−1 + θ1wt−1 + wt. (10)

5



Remeber - this ARMA (1, 1) model is mean-zero. It has variance,

γy (0) = E
[
y2t
]

= ϕ2
1E
[
y2t−1

]
+ θ21E

[
w2

t−1

]
+ E

[
w2

t

]
+ 2ϕ1θ1E [yt−1wt−1]

= ϕ2
1γy (0) +

(
θ21 + 2ϕ1θ1 + 1

)
σ2
w

γy (0) =
(θ21 + 2ϕ1θ1 + 1)σ2

w

1− ϕ2
1

, (11)

and autocovariance function

γy (h) = E [ytyt−h]

= ϕ1E [yt−1yt−h] + θ1E [wt−1yt−h]

=

 ϕ1γy (0) + θ1σ
2
w h = 1

ϕ1γy (h− 1) h > 1

We can simplify this further to

γy (h) = σ2
wϕ

h−1
1

(
(1 + θ1ϕ1) (ϕ1 + θ1)

1− ϕ2
1

)
(12)

ρy (h) =
(1 + θ1ϕ1) (ϕ1 + θ1)ϕ

h−1
1

1 + 2θ1ϕ1 + θ21
,

both for for h ≥ 1. Note that when h = 1 and ϕ1 = 0, ϕh−1
1 = 00 = 1.

It’s a bit of a pain to use (9) to predict ŷ3, because we need to do some matrix compu-

tations. Instead, let’s see what the Durbin-Levinson and innovation algorithms give us. For

ŷ3, we need to compute:

Durbin-Levinson:

1. c11 = ρy (1);

2. v0 = γy (0);

3. v1 = γy (0)
(
1− ρy (1)

2);
6



4. c22 =
(
ρy (2)− ρy (1)

2) / (1− ρy (1)
2);

5. c21 = ρy (1) (1− ρy (2)) /
(
1− ρy (1)

2);
6. ŷ3 = c21y2 + c22y1.

Note that I’ve simplified things quite a bit to make things easier.

For an AR (1) model where γy (0) = σ2
w/ (1− ϕ2

1) and ρy (h) = ϕh
1 , this simplifies to:

1. c11 = ϕ1;

2. v0 = σ2
w/ (1− ϕ2

1);

3. v1 = σ2
w;

4. c22 = 0;

5. c21 = ϕ1;

6. ŷ3 = ϕ1y2.

For an MA (1) model where γy (0) = σ2
w (θ21 + 1) and ρy (h) = θ1/ (θ

2
1 + 1) if h = 1 and

ρy (h) = 0 if h > 1, this simplifies to:

1. c11 = θ1/ (1 + θ21);

2. v0 = σ2
w (1 + θ21);

3. v1 = σ2
w (1 + θ41 + θ21) / (1 + θ21);

4. c22 = −ρy (1)
2 /
(
1− ρy (1)

2);
5. c21 = ρy (1) /

(
1− ρy (1)

2);
6. ŷ3 =

(
ρy (1) /

(
1− ρy (1)

2))y2 + (−ρy (1)
2 /
(
1− ρy (1)

2)) y1.

7



We can see that although things simplify nicely for the AR (1) model, i.e. we end up

expressing ŷ3 as just a function of the most immediate previous value y2. Unfortunately

things do not simplify as nicely for the MA (1) model - we have to hold onto y2 − ŷ2 and

y1 − ŷ1, even though our MA (1) model lets us write y3 just as a function of the previous

noise w2 and some additional independent noise.

We might ask if things work out better if we compute d3 under the innovation algorithm.

Innovation:

• v0 = γy (0);

• d11 = ρy (1);

• v1 = γy (0)
(
1− ρy (1)

2).
• d22 = ρy (2);

• d21 = ρy (1) (1− ρy (2)) /
(
1− ρy (1)

2);
• ŷ3 = d21 (y2 − ŷ2) + d22 (y1 − ŷ1).

For the AR (1) model,

• v0 = σ2
w/ (1− ϕ2

1);

• d11 = ϕ1;

• v1 = σ2
w.

• d22 = ϕ2
1;

• d21 = ϕ1;

• ŷ3 = ϕ1 (y2 − ŷ2) + ϕ2
1 (y1 − ŷ1).

For the MA (1) model,

8



• v0 = σ2
w (1 + θ2w);

• d11 = θ1/ (1 + θ21);

• v1 = σ2
w (1 + θ2w);

• d22 = 0;

• d21 = ρy (1) /
(
1− ρy (1)

2);
• ŷ3 =

(
ρy (1) /

(
1− ρy (1)

2)) (y2 − ŷ2)

This fixes our problem for the MA (1) model - we only need to hold onto the most recent lag

y2 and it’s prediction ŷ2. Unfortunately, the innovations algorithm doesn’t simplify nicely

for the AR (1) model - we have to hold onto y2 and y1, even though our AR (1) model lets

us write y3 just as a function of y2 and independent noise.

This leaves us a bit stuck. For general ARMA (p, q) processes, applying the Durbin-

Levinson or innovation algorithms to yt directly won’t give us our prediction for ym+1 as

a function of only the max {p, q} most recent lagged values ym+1−1, . . . , ym+1−p and the

max {p, q} most recent forecast errors ym+1−1 − ŷm+1−1, . . . , ym+1−p − ŷm+1−p.

I’m not going to go into this in detail, but it turns out that if we apply the innovations

algorithm to a specific transformation of yt denoted by f (yt) (I won’t give the specific trans-

formation here for the sake of our sanity!) and then transform back to get our predictions

ŷm+1, we’re able to get a recursive algorithm for predicting ŷm+1 under a ARMA (p, q)

model that only requires us to hold on to:

• The p previous values of the time series ym, . . . , ym+1−p;

• The q previous values of the forecast errors ym − ŷm, . . . , ym+1−q − ŷm+1−q.

I don’t expect you to know what the transformation or algorithm is. Rather I just hope we

can all appreciate that forecasting a future value without having to hold onto the entire past

is tricky, even if we assume a model like an ARMA (p, q) model that gives us a convenient

9



way of expressing an observation at any given time as a function of only the max {p, q}

most recent values. That said, if you really want to know how this works see Section 5.3 of

Brockwell and Davis (1991).

10


