
Linear State-Space Models

September 3, 2024

The material in these notes draws from several sources, including Chapter 6 of S&S,

Chapter 11 of Chan (2010), and the online textbook Applied Time Series Analysis which

was written by the authors of the MARSS software for R.

Introduction to a Simple State-Space Model

State space models give us yet another way of writing out a model for our time series. In

this section, the notation we use will differ slightly. The observed time series that we intend

to analyze has values y1, . . . , yn. Let’s work through a small example! For a univariate time

series of length n we assume

yt = axt + vt Observation Equation

xt = ϕxt−1 + wt State Equation,

where vt
i.i.d.∼ N (0, σ2

v), wt
i.i.d.∼ N (0, σ2

w) and x1 = µ. The state equation looks like an AR(1)

model, but values of the AR(1) process xt are not observed, and it differs from an AR(1)

model insofar as the initial state is assumed to be fixed. Rather, a linear transformation yt

of the states xt are observed with some additional normal noise. To emphasize, we observe

values of yt, but we do not observe values of xt.
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Predicting, Filtering, and Smoothing the States and Forecasting

the Time Series

For now, let’s assume that we know σ2
v , σ

2
w, a, ϕ, and µ. Having assumed a state-space

model, we might be interested in:

• Predicting, i.e. estimating future values of xt given past values of yt−1, . . . , y1

– For example, computing E [x2|y1] and V [x2|y1]

• Filtering, i.e. estimating future values of xt given current and past values yt, . . . , y1

– For example, computing E [x2|y1, y2] and V [x2|y1, y2]

• Smoothing, i.e. estimating a past value of xt−1 given all observed past, current, and

future values yn, . . . , y1

– For example, computing E [x1|y1, y2] and V [x1|y1, y2]

As usual, we might also be interested in forecasting future values yn+k given y1, . . . , yn,

which will require prediction of the states because we will need to compute E [xn+k|y1, . . . , yn].

Even if we do know the values of these parameters, how do we go about predicting, filtering,

and smoothing?

The first step is to realize that we can write out the joint probability distribution of y

and x. Because we have assumed that the errors v and w and the initial value x1 is fixed,

we know that the joint distribution of y and x is given by:

 y

x

 ∼ N


 E [y]

E [x]

 ,

 V [y] Cov [y,x]

Cov [y,x] V [x]


 . (1)

Why is this useful? Well, predicting, filtering, smoothing, and forecasting all correspond

to different conditional mean and variance estimation problems, and when we have a normal
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joint distribution and know its parameters, it’s easy to figure out any conditional distribution

we want! We can see this most easily in the case of smoothing, which corresponds to the

problem of estimating the conditional means E [x|y] and variances V [x|y]. Before we go

further, a very useful property of the multivariate normal distribution is that:

If

 u

v

 ∼ N


 a

b

 ,

 C D

D′ E


, then

– The marginal distributions of u and v are given by

u ∼ N (a,C) and v ∼ N (b,E)

– The conditional distributions of u|v and v|u

u|v ∼ N
(
a+D′E−1 (v − b) ,C −D′E−1D

)
v|u ∼ N

(
b+DC−1 (u− a) ,E −DC−1D′)

We can use these facts to find the conditional distributions of the states x given the data

y and accordingly, the smoothed estimates of the states, but first we’ll simplify the joint

distribution a bit. We can simplify E [y], V [y], and Cov [x,y].

• It’s pretty straightforward to see that E [y] = aE [x]

• A bit of algebra lets us rewrite V [y]

V [y] = E
[
(y − E [y]) (y − E [y])′

]
= E

[
(a (x− E [x]) + v)

(
(a (x− E [x]) + v)′

]
= a2V [x] + σ2

vIn.
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• A bit more algebra lets us rewrite Cov [x,y]

Cov [x,y] = E
[
(x− E [x]) (y − E [y])′

]
= E

[
(x− E [x]) (ax− aE [x] +w)′

]
= aV [x]

Plugging these expressions into 2 yields a nicely structured normal distribution, y

x

 ∼ N


 aE [x]

E [x]

 ,

 a2V [x] + σ2
vIn aV [x]

aV [x] V [x]


 . (2)

Using our normal distribution facts and (2), we can return to the smoothing problem

x|y ∼ N (E [x] + aV [x]
(
a2V [x] + σ2

vIn

)−1
(y − aE [x]) ,

V [x]− a2V [x]
(
a2V [x] + σ2

vIn

)−1V [x]
)
.

The smoothed values of the states are given by the conditional mean

E [x] + aV [x]
(
a2V [x] + σ2

vIn

)−1
(y − aE [x]) ,

and our uncertainty about them is quantified by the conditional variance,

V [x]− a2V [x]
(
a2V [x] + σ2

vIn

)−1V [x] .

Predicting and filtering can be done similarly by identifying the marginal joint distri-

bution of a state and the corresponding observed values, and computing the corresponding

conditional distribution.

• We can obtain predicted means and variances of the states xt given the past observed

values of the time series y1, . . . , yt−1 by letting u = xt and v = (y1, . . . , yt−1), using our

marginal and conditional normal distribution facts;

• We can obtain filtered means and variances of the states xt given the past and current

4



observed values of the time series y1, . . . , yt using our marginal and conditional normal

distribution facts, letting u = xt and v = (y1, . . . , yt).

Forecasts follow straightforwardly. We have assumed yt = axt + vt, so it is natural to

define a forecasted value of yn+k as

E [yn+k|y1, . . . , yn] = aE [xn+k|y1, . . . , yn] ,

with variance

V [yn+k|y1, . . . , yn] = a2V [xn+k|y1, . . . , yn] + σ2
w.

In general, even though we can figure out any conditional distribution we want, it would

be very computationally burdensome to figure out each conditional expectation one by one.

Fortunately, the Kalman filter allows for fast, recursive estimation of:

• Predicted means and variances

• Filtered means and variances

• Smoothed means and variances

• Forecast means and variances.

The existence of a fast algorithm to compute all of these quantities is essential in practice.

• Kalman Prediction & Filtering: The Kalman prediction and filtering algorithms

work together, iteratively computing the predictions, prediction variances, filtered val-

ues of xt, and variances of the filtered values, starting at time t = 1. To aid interpreta-

tion of the algorithm, predictions and their variances are printed in blue, while filtered

values and their variances are printed in red.

– E [xt|y1, . . . , yt−1] = ϕE [xt−1|y1, . . . , yt−2]+
(

aϕV[xt−1|y1,...,yt−2]
a2V[xt−1|y1,...,yt−2]+σ2

v

)
(yt−1 − aE [xt−1|y1, . . . , yt−2])

– V [xt|y1, . . . , yt−1] = σ2
w + ϕ2V [xt−1|y1, . . . , yt−2]

(
1− a2V[xt−1|y1,...,yt−2]

a2V[xt−1|y1,...,yt−2]+σ2
v

)
– E [xt|y1, . . . , yt] = E [xt|y1, . . . , yt−1] +

(
aV[xt|y1,...,yt−1]

a2V[xt|y1,...,yt−1]+σ2
v

)
(yt − aE [xt|y1, . . . , yt−1])
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– V [xt|y1, . . . , yt] = V [xt|y1, . . . , yt−1]
(
1− a2V[xt|y1,...,yt−1]

a2V[xt|y1,...,yt−1]+σ2
v

)
• Kalman Smoothing: Kalman smoothing works in reverse, starting at time t = n−1.

It uses the Kalman predictions, filtered values, and their variances. For each value of

t, the smoother starts at s = 1 and proceeds until s = n− t.

– The smoother first computes an expectation:

E [xt|y1, . . . , yt+s] = E [xt|y1, . . . , yt+s−1] +

aE [(xt − E [xt|y1, . . . , yt−1]) (xt+s − E [xt+s|y1, . . . , yt+s−1])]

a2V [xt+s|y1, . . . , yt+s−1] + σ2
v

(yt+s − aE [xt+s|y1, . . . , yt+s−1])

– Then some covariances as well:

E [(xt − E [xt|y1, . . . , yt−1]) (xt+s − E [xt+s|y1, . . . , yt+s−1])] =

ϕE [(xt − E [xt|y1, . . . , yt−1]) (xt+s−1 − ϕE [xt+s−1|y1, . . . , yt+s−2])]

(
1− a2V [xt+s−1|y1, . . . , yt+s−2]

a2V [xt+s−1|y1, . . . , yt+s−2] + σ2
v

)
– And finally a variance:

V [xt|y1, . . . , yt+s] = V [xt|y1, . . . , yt+s−1]− a2

(
E [(xt − E [xt|y1, . . . , yt−1]) (xn − E [xt+s|y1, . . . , yt+s−1])]

2

a2V [xt+s|y1, . . . , yt+s−1] + σ2
v

)

The intuition motivating these algorithms is closely related to the intuition behind the

Durbin-Levinson algorithm, which we saw when we studied forecasting. The basic idea

is that the algorithms let us avoid repeated computationally expensive matrix inversions by

exploiting relationships between the values we want to compute.

Estimating the State-Space Model Parameters

So far, we’ve assumed that the parameters σ2
v , σ

2
w, a, ϕ, and µ are known. In practice, a is

often assumed to be fixed and known at a = 1 but we may need to estimate the rest of the

parameters from the data. This requires maximizing the marginal likelihood of the data

y, having integrated the latent time series x out. This is given by:

p
(
y|σ2

v , σ
2
w, a, ϕ, µ

)
=

∫
p
(
y|x, σ2

v , a
)
p
(
x|µ, ϕ, σ2

w

)
dx. (3)

Maximizing over an integral is tricky!
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Direct Maximum Marginal Likelihood

Fortunately, our normal distribution facts tell us that the marginal distribution of y is

y ∼ N
(
aE [x] , a2V [x] + σ2

vIn

)
, (4)

which means that the integral can be evaluated to a normal density for y equal to:

1√
2π

n√|a2V [x] + σ2
vIn|

exp
{
− (y − aE [x])′

(
a2V [x] + σ2

vIn

)−1
(y − aE [x])

}
,

where |A| refers to the determinant of the matrix A. If we could maximize this over

σ2
v , σ

2
w, a, ϕ, and µ, then we’d be all set! Unfortunately, evaluating the marginal likelihood

requires inverting an n× n matrix, which can be very computationally expensive. It would

be better if we could write the marginal likelihood as a function of just the data and output

from the Kalman predictor, filter, or smoother. Fortunately, this is possible!

Let rt = yt − aE [xt|y1, . . . , yt−1] be the one-step-ahead forecast errors with variances

V [rt|y1, . . . , yt−1] = a2V [xt|y1, . . . , yt−1] + σ2
v . Conveniently, it’s possible to use our normal

distribution facts to show that we can write the likelihood in terms of the residuals as

p (r1)

n∏
t=2

p (rt|y1, . . . , yt−1) =
1

√
2π

n
1√
V [r1]

exp

{
− r21
2V [r1]

} n∏
t=2

1√
V [rt|y1, . . . , yt−1]

exp

{
− r2t
2V [rt|y1, . . . , yt−1]

}
.

(5)

Defining the likelihood in this way doesn’t quite get us out of the woods - although we

can evaluate it quickly given values of σ2
v , σ

2
w, a, ϕ, and µ, it is still difficult to maximize (5)

over σ2
v , σ

2
w, a, ϕ, and µ jointly as written because they all affect the values of r as well as the

variances. Fortunately, we can take a computationally simpler approach which maximizes

(5) by picking starting values of the parameters σ2
v , σ

2
w, a, ϕ, and µ and then iteratively:

• Fixing σ2
v , σ

2
w, a, ϕ, and µ and computing r accordingly, using the Kalman prediction

algorithm;

• Maximizing (5) over σ2
v , σ

2
w, a, ϕ, and µ for fixed r.

This iterative process continues until the likelihood (6) or successive values of the parameters
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σ2
v , σ

2
w, a, ϕ, and µ converge. This is a popular way to compute maximum likelihood estimates

of σ2
v , σ

2
w, a, ϕ, and µ, but it can be difficult to work in practice because the second step of

maximizing (5) over σ2
v , σ

2
w, a, ϕ, and µ for fixed r is still a tricky nonlinear optimization

problem.

Expectation-Maximization (EM) Maximum Marginal Likelihood

One other way we can compute maximum likelihood estimates of σ2
v , σ

2
w, a, ϕ, and µ is to

use the expectation-maximization (EM) algorithm, which is an algorithm for maximizing a

function that corresponds to an integral over some latent variables, which in this case are

the latent states xt. The EM algorithm allows us to maximize the marginal likelihood in (3)

by maximizing E [log (p (y|x, σ2
v , a) p (x|µ, ϕ, σ2

w)) |y1, . . . , yn] using an iterative procedure. It

isn’t immediately obvious how this helps us, but we will get a sense by working simplifying

the conditional expectation of the joint log-likelihood:

E
[
log
(
p
(
y|x, σ2

v , a
)
p
(
x|µ, ϕ, σ2

w

))
|y1, . . . , yn

]
=

E

[
log

(
p
(
y1|x1, σ

2
v , a
)
p (x1|µ)

n∏
t=2

p
(
yt|xt, σ

2
v , a
)
p
(
xt|xt−1, ϕ, σ

2
w

))
|y1, . . . , yn

]
=

K − n

2
log
(
σ2
v

)
− 1

2σ2
v

n∑
t=1

E
[
(yt − axt)

2 |y1, . . . , yn
]
−

(n− 1)

2
log
(
σ2
w

)
− 1

2σ2
w

n∑
t=2

E
[
(xt − ϕxt−1)

2 |y1, . . . , yn
]
=

K − n

2
log
(
σ2
v

)
− 1

2σ2
v

n∑
t=1

E
(
y2t − 2aytE [xt|y1, . . . , yn] + a2E

[
x2
t |y1, . . . , yn

])
− (6)

(n− 1)

2
log
(
σ2
w

)
− 1

2σ2
w

n∑
t=3

(
E
[
x2
t |y1, . . . , yn

]
− 2ϕE [xtxt−1|y1, . . . , yn] + ϕ2E

[
x2
t−1|y1, . . . , yn

])
−

1

2σ2
w

(
E
[
x2
2|y1, . . . , yn

]
− 2ϕµE [x2|y1, . . . , yn] + ϕ2µ2

)
,

where x1 = µ. where K is a constant that doesn’t depend on the data y, or the latent

states x, or the state-space parameters a, ϕ, σ2
v , σ

2
w, and µ. We can maximize the marginal

likelihood in (3) by picking starting values of the parameters σ2
v , σ

2
w, a, ϕ, and µ and then

iteratively:

• Fixing the parameter values a, ϕ, σ2
v , σ2

w, and µ and computing the expectations

E [xt|y1, . . . , yn] and E [xtxt−1|y1, . . . , yn] using output from the Kalman smoother;
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• Fixing the expectations E [xt|y1, . . . , yn] and E [xtxt−1|y1, . . . , yn] and maximizing (6)

over a, ϕ, σ2
v , σ

2
w, and µ.

This iterative process continues until the likelihood (6) or successive values of the parameters

σ2
v , σ

2
w, a, ϕ, and µ converge. It’s common to refer to the first step as the E-step, because

it involves computing expectations, and it is common to refer to the second step as the

M -step, because it involves maximizing a function. This approach is computationally much

simpler than the previous one, because the parameters σ2
v , σ

2
w, a, ϕ, and µ enter into the

M -step in much more convenient ways. In fact, there are closed form solutions to the M -

step, i.e. we can write down formulas for the values of σ2
v , σ

2
w, a, ϕ, and µ that maximize

(6) when the expectations E [xt|y1, . . . , yn] and E [xtxt−1|y1, . . . , yn] are held constant! The

main disadvantage to using this approach is that it can converge very slowly. In practice, we

often use a hybrid of both approaches, by using the results of a (possibly unconverged) EM

algorithm as starting values for a direct maximum marginal likelihood estimation procedure.

More General Linear State-Space Models

Let’s make things a little more general! We can incorporate covariates zt, and allow the

linear transformation from the states xt to the observed data yt to depend on time by letting

a depend on time, denoted by at:

yt = atxt + z′
tγ + vt Observation Equation

xt = ϕxt−1 + z′
tυ + wt State Equation,

where vt
i.i.d.∼ N (0, σ2

v), wt
i.i.d.∼ N (0, σ2

w) and x1 ∼ N (µ, σ2
x) and at is either fixed and known

or known up to a constant, i.e. at = act where ct is fixed and known but a is not. The

Kalman prediction, filtering, and smoothing algorithms we discussed in the simpler case can

be extended to quickly compute predictions, filtered values, and smoother values for the more

general model. The maximum likelihood estimation procedures can likewise be generalized

to estimate σ2
v , σ

2
w, ϕ, a, γ, υ, and µ from the marginal likelihood of the observed time series.
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In state-space models, seasonal effects are often included via the inclusion of covariates

in the observed data process, zt. For example, if the data is observed daily but weekly effects

are expected to be present, we might include day of the week indicators in zt. Alternatively,

we could include the covariates zt in the state process. Usually, we only include the covariates

in one process or the other, i.e. we either set γ = 0 and estimate υ from the data or we

set υ = 0 and estimate γ from the data. Additionally, state-space models can be used to

perform stochastic regression with a single covariate, the values of at correspond to the

values of a single covariate. If this is the case, we can think of xt as a time-varying regression

coefficient.

Getting Into the Weeds

It can be valuable to derive closed form expressions for E [x] and V [x] to delve into the

implied marginal distribution of the data under the state-space models discussed here. First,

we derive E [x] and V [x].

x1 = µ+ z′
1υ

x2 = ϕ (µ+ z′
1υ) + z′

2υ + w2

x3 = ϕx2 + w3 = ϕ2 (µ+ z′
1υ) + ϕz′

2υ + z′
3υ + ϕw2 + w3

x4 = ϕx3 + w4 = ϕ3 (µ+ z′
1υ) + ϕ2z′

2υ + ϕz′
3υ + z′

4υ + ϕ2w2 + ϕw3 + w4

xk = ϕk−1µ+

(
k∑

i=1

ϕk−iz′
i

)
υ +

(
k∑

i=2

ϕk−iwi

)

E [xt] = ϕt−1µ+

(
k∑

i=1

ϕk−iz′
i

)
υ

V [xt] = σ2
w

t∑
i=2

ϕ2(t−i)

Cov [xt, xs] = σ2
w

min{s,t}∑
i=2

ϕt+s−2i, s, t > 1

Cov [x1, xk] = 0 for all k.
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Combining this with what is known about the marginal distribution of y based on prop-

erties of normal distributions and letting t = (1, . . . , n), we have:

y ∼ normal

a ◦
(
ϕt−1µ+ Z̃υ

)
+Zγ,

 σ2
v 0′

0 σ2
wΩ ◦ (aa′) + σ2

vIn−1


 ,

where ‘◦’ refers to the elementwise Hadamard product, z̃t =
(∑t

i=1 ϕ
t−iz′

i

)
, and ωst =

σ2
w

∑min{s+1,t+1}
i=2 ϕt+s+2(1−i). In the special case where at = a,

y ∼ normal

ϕt−1 (aµ) + Z̃ (aυ) +Zγ,

 σ2
v 0′

0 a2σ2
wΩ+ σ2

vIn−1


 .

Note that when ϕ = 0, Z̃ = Z. This model assumes that the observations yt are centered

around a rescaled multiple of the starting value µ, a weighted sum of the past and present

covariate values, and the present covariate value. Note that a, ϕ, σ2
w, and σ2

v are subject to

the constraints that a2σ2
wΩ+σ2

vIn−1 and Ω are positive definite, to ensure that the marginal

likelihood and conditional distributions of the states are well defined.
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