
Stochastic Volatility Models

September 3, 2024

The material in these notes draws from several sources, including Section 10 of Chapter

6 of S&S, Section 4 of Chapter 11 of Chan (2010), and a very nice paper documenting the

stochvol package for R by the software’s author, Gregor Kastner.

Introduction to the Stochastic Volatility Model

The stochastic volatility model is a nonlinear state-space model, which provides an

alternative to the ARCH and GARCH models we discussed previously.

For a univariate time series of length n we assume

yt = exp {ht/2} vt Observation Equation

(ht − µh) = ϕ (ht−1 − µh) + wt State Equation,

where |ϕ| < 1, vt
i.i.d.∼ N (0, 1), wt

i.i.d.∼ N (0, σ2
w) and h1 ∼ N (µh, σ

2
w/ (1− ϕ2)). The state

equation is still a simple AR(1) model, but the observations yt are a nonlinear function of

the latent states.

Thus far throughout the course, our process has proceeded as follows:

1. Specify a model for a time series y that involves some latent variables and a handful

of parameters;

2. Find the marginal likelihood maximizing values of the parameters;
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3. Compute conditional means and variances of the states and forecasts by plugging in

the marginal likelihood maximizing values of the parameters.

We run into two serious computational problems when we work with this model.

(×) The full conditional distributions of the states given the observed data are not available

in closed form, nor are the corresponding conditional means and variances

– Because this we don’t have computationally efficient or speedy ways of comput-

ing the predictions E [ht|y1, . . . , yt−1] and their variances V [ht|y1, . . . , yt−1], fil-

tered values E [ht|y1, . . . , yt] and their variances V [ht|y1, . . . , yt], smoothed values

E [ht|y] and their variances V [ht|y], or forecasts E [yn+k|y] and their variances

V [yn+k|y] even if we treat the parameters µh, σ
2
w, and ϕ as known.

(⋆) It’s impractically difficult to maximize the marginal likelihood over the parameters µh,

σ2
w, and ϕ, which we would usually use to construct our predictions, filtered values,

smoothed values, and forecasts.

Approximating the Smoothed State and Forecast Values and Their

Variances

Let’s consider the the first problem (×). It turns out that when the full conditional dis-

tributions are not available in closed form, we can approximate the conditional means and

variances via simulation. Consider smoothed values E [ht|y] and their variances V [ht|y] -

they correspond to the means and variances of the conditional distributions of the states

given the data, e.g. p (h1|y) =
∫
p (h|y) dh2 . . . dhn. If we could simulate m values of the

states h(1), . . . ,h(m) according to the p (h|y), then we could approximate the smoothed val-
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ues and their variances with the sample mean and variance of the simulated values:

E [ht|y] ≈
1

m

m∑
i=1

h
(i)
t (1)

V [ht|y] ≈
1

m− 1

m∑
i=1

(
h
(i)
t − 1

m

m∑
i=1

h
(i)
t

)2

.

Fortunately, there are very powerful Markov Chain Monte Carlo (MCMC) methods

for simulating from any distribution that we can write out if we know how the density depends

on the random variable(s) we want to simulate, even if we don’t know the normalizing

constant. For this problem, we want to simulate values of the random variable h according

to

p
(
h|y, ϕ, µh, σ

2
w

)
=

p (h,y|ϕ, µh, σ
2
w)

p (y|ϕ, µh, σ2
w)

=
p (y|h) p (h|ϕ, µh, σ

2
w)

p (y|ϕ, µh, σ2
w)

=
something we can write out as a function of h

normalizing constant that we don’t know, but which doesn’t depend on h
.

This means that those powerful methods can be applied to get simulated values h(1), . . . ,h(m)!

We won’t get into the details in this class, we’ll just use software that does this behind the

scenes. Given a specified number of simulated values the user desires, m, the software will

return m simulated values h(1), . . . ,h(m) to us. Then we can approximate the smoothed

values and their variances using (1). There are two important things to keep in mind:

• Successive simulated values h(1), . . . ,h(m) may not be independent. This means that

the m simulated values h(1), . . . ,h(m) may contain less information than m indepen-

dent draws from p (h|y, ϕ, µh, σ
2
w). One way of quantifying the amount of information

in each set of simulated values h
(1)
t , . . . , h

(m)
t is to compute the effective sample size.

– Without getting into the details, effective sample size takes a possibly correlated

set of sampled values from a distribution, e.g. h
(1)
t , . . . , h

(m)
t , and returns an

estimate of the number m′, the number of independent draws h̃
(1)
t , . . . , h̃

(m′)
t that
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would be needed to get the same variance. This is a tricky concept, but the key

idea is that the effective sample size is a better way of quantifying how much

information is in each set of simulated values h
(1)
t , . . . , h

(m)
t than m, the actual

number of simulated values.

• We need to choose m to be large enough to get a good approximation of the smoothed

values and their variances. There are lots of different ways of assessing whether or not

m is large enough, but no hard-and-fast rule to go by. Some ad-hoc checks include:

– Examining the effective sample sizem′ for each set of simulated values h
(1)
t , . . . , h

(m)
t ,

and asking if that’s a number we’d feel comfortable with if we were doing a simple

random sample to estimate a population mean.

– Visually examining the trace plots for each set of simulated values h
(1)
t , . . . , h

(m)
t .

A trace plot just plots the simulated values of h
(1)
t , . . . , h

(m)
t on the y-axis in the

order they were drawn. The approximate smoothed values and variances may

be bad approximations if the trace plots show any slowly varying or systematic

trends. If there are slowly varying or systematic trends, increasing m and/or

thinning, i.e. not saving every simulated value, can help.

– Repeating the procedure of drawing m simulated values h(1), . . . ,h(m) several

times, and comparing the approximate smoothed values and their variances each

time. If m is large enough, each repeated procedure should produce nearly iden-

tical approximate smoothed values and their variances.

– There are also various diagnostic tests that you could implement, but we won’t

discuss them here.

This tells us how to approximate the smoothed values and their variances, but what

about the forecasts and their variances? Given m simulated values h(1), . . . ,h(m), we can

simulate a future state value hn+k and a forecast yn+k according to the stochastic volatility
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model. More specifically, we would do the following for each value of i for l = 1, . . . , k:

h
(i)
n+l ∼ N

(
µ
(i)
h + ϕ(i)

(
h
(i)
n+l−1 − µ

(i)
h

)
, σ2(i)

w

)
and y

(i)
n+l ∼ N

(
0, exp

{
h
(i)
n+l

})
.

Then, we can approximate the k-step ahead forecast and its variances:

E [yn+k|y1, . . . , yn] ≈
1

m

m∑
i=1

y
(i)
n+k and V [yn+k|y1, . . . , yn] ≈

1

m− 1

m∑
i=1

(
y
(i)
n+k − 1

m

m∑
i=1

y
(i)
n+k

)2

. (2)

Analogously, the k-step ahead prediction of the state and its variance can be approximated:

E [hn+k|y1, . . . , yn] ≈
1

m

m∑
i=1

h
(i)
n+k and V [hn+k|y1, . . . , yn] ≈

1

m

m∑
i=1

(
h
(i)
n+k − 1

m− 1

m∑
i=1

h
(i)
n+k

)2

. (3)

In general, most statistics software that uses MCMC methods to simulate latent states

under time series models like the stochastic volatility model will just return draws from the

conditional distribution of the states h given all of the observed data y, which means that

the output is not useful for computing the within-sample predictions or filtered values of the

states and their variances because they correspond to means and variances of conditional

distributions of states h given some of the observed data.

Dealing with the Stochastic Volatility Parameters

Now let’s consider the the first problem (⋆). So far, we’ve assumed that the parameters σ2
w,

ϕ, and µh are known. When we worked with the linear state-space model, we estimated the

parameters by maximizing the marginal likelihood of the data y. Unfortunately, that just

isn’t feasible when we are working with the stochastic volatility model. Under the stochastic

volatility model, the marginal likelihood of the data y is given by:

p
(
y|σ2

w, ϕ, µh

)
=

∫
p (y|h) p

(
h|µh, ϕ, σ

2
w

)
dh. (4)

Neither of the two methods we discussed in the linear-state-space setting is feasible here.

• Direct maximum marginal likelihood is not feasible because we don’t have con-

venient distributional facts that tell us what the marginal distribution y is.
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• Expectation-maximization (EM) maximum marginal likelihood, which maxi-

mizes E [log (p (y|h) p (h|µh, ϕ, σ
2
w)) |y] is not feasible because E [log (p (y|h) p (h|µh, ϕ, σ

2
w)) |y]

cannot be simplified to depend on a handful of conditional expectations that we can

compute easily and quickly. Some more details explaining this are provided for any

especially curious readers at the end of these notes.

Saved by the Bayes!

It turns out that assuming prior distributions for the parameters σ2
w, ϕ, and µh can help us

out, even though doing so appears to make our model more complex. We often call models

that include prior distributions for the parameters Bayesian models, although there are

other ways of thinking about a model that includes parameters for the parameters.

If we assume prior distributions for the parameters, then instead of computing the condi-

tional expectations and variances we need for prediction, filtering, smoothing, and forecasting

for fixed, marginal likelihood maximizing values of the parameters σ2
w, ϕ, and µh, we will

compute the conditional expectations and variances we need for prediction, filtering, smooth-

ing, and forecasting averaging over possible values of the parameters σ2
w, ϕ, and µh. To make

this more explicit, consider the smoothed value E [h1|y]. When we assume prior distributions

for parameters σ2
w, ϕ, and µh, it is defined as:

E [h1|y] =
∫

h1p
(
h, ϕ, µh, σ

2
w|y
)
dh1 . . . dhndϕdµhdσ

2
w, (5)

which can be thought of as a weighted average of possible values of h1, where the weights

are how likely each value of h1 is given the observed data, a set of parameter values, and

a set of other state values h2, . . . , hn and we average over all possible parameter values and

other state values. When we are thinking of this as a Bayesian model, we will often refer to

p (h, ϕ, µh, σ
2
w|y) as the posterior distribution, which is proportional to the joint likelihood
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of the data y, the states and the parameters:

p
(
h, ϕ, µh, σ

2
w|y
)
=

p (h, ϕ, µh, σ
2
w,y)

p (y)

=
p (y|h) p (h|µh, ϕ, σ

2
w) p (µh) p (ϕ) p (σ

2
w)

p (y)
,

where p (µh), p (ϕ), and p (σ2
w) are the densities corresponding to the prior distributions we

assumed for µh, ϕ, and σ2
w.

We can use the same MCMC methods we discussed previously to simulate values the

states h(1), . . . ,h(m) as well as the parameters ϕ(1), . . . , ϕ(m), µ
(1)
h , . . . , µ

(m)
h , and σ

2(1)
w , . . . , σ

2(m)
w

according to p (h, ϕ, µh, σ
2
w|y). The MCMC methods proceed iteratively:

• Simulate h(i) according to p
(
h|y, ϕ(i−1), µ

(i−1)
h , σ

2(i−1)
w

)
• Simulate ϕ(i) according to p

(
ϕ|y,h(i), µ

(i−1)
h , σ

2(i−1)
w

)
• Simulate µ

(i)
h according to p

(
µh|y,h(i), ϕ

(i)
h , σ

2(i−1)
w

)
• Simulate σ

2(i)
w according to p

(
σ2
w|y,h(i), ϕ(i), µ

(i)
h

)
.

Each of these steps can be handled by standard MCMC methods, because we can write out

each conditional distribution up to a normalizing constant.

One we have collected m simulated values from p (h, ϕ, µh, σ
2
w|y), we can approximate the

smoothed means and variances of the states just by taking the sample means and variances

of each set of simulated values, as described in (1). We can also use the m simulated values

from p (h, ϕ, µh, σ
2
w|y) to approximate the forecasts and their variances as described in (2),

as well as the out-of-sample predictions of the states and their variances as described in

(3). In order to understand what the data and priors combined suggest about the values

of the parameters ϕ, µh, and σ2
w, we might also want to examine the approximate marginal

posterior distributions of the parameters, p (ϕ|y), p (µh|y), and p (σ2
w|y). Approximations

can be obtained by examining histograms and kernel densities of the draws ϕ(1), . . . , ϕ(m),

µ
(1)
h , . . . , µ

(m)
h , and σ

2(1)
w , . . . , σ

2(m)
w , respectively. In particular, we might want to approximate
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the posterior means and variances of each parameter, e.g.

E [ϕ|y] ≈ 1

m

m∑
i=1

ϕ(i) and V [ϕ|y] ≈ 1

m

m∑
i=1

(
ϕ(i) − 1

m

m∑
i=1

ϕ(i)

)2

.

Choosing Priors

To actually take this approach, we need to choose prior distributions for the parameters. In

practice, people often assume normal distributions for continuous parameters, gamma distri-

butions for positive parameters, and beta prior distributions for parameters that constrained

to an interval and select values for bµ, Bµ, a0, b0, and Bσ2
w
that reflect their prior beliefs

about the parameters:

µh ∼ N (bµ, Bµ) , (ϕ+ 1) /2 ∼ B (a0, b0) , and σ2
w ∼ G

(
shape =

1

2
, rate =

1

2Bσ2
w

)
.

These priors have some interesting special cases and properties:

• When a0 = b0 = 1, we get a uniform prior for ϕ on [−1, 1].

• This gamma prior for σ2
w is the same as a χ2

1 prior for σ2
w/Bσ2

w
.

Ideally, we would have well informed beliefs about likely values of all of the parameters,

however in practice we are often quite uncertain. For this reason, we will usually try to choose

uninformative priors, which are very weakly concentrated about plausible values. If two

different priors are both very uninformative, the posterior distribution p (h, ϕ, µh, σ
2
w|y) will

be similar under both priors because the data contributes more information to the posterior

than the prior. To clarify what this means a bit, recall that we the posterior can be written

as proportional to the product of some likelihood terms and some prior terms:

p
(
h, ϕ, µh, σ

2
w|y
)
=

information from data︷ ︸︸ ︷
p (y|h) p

(
h|µh, ϕ, σ

2
w

) information from prior︷ ︸︸ ︷
p (µh) p (ϕ) p

(
σ2
w

)
p (y)

.

One way to check how informative a prior is is to compare the posterior distribution for

a parameter to the prior distribution - if the posterior distribution looks a lot like the prior
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even when we have a lot of data, then we might have used a prior that is more informative

than we had intended. We might also try several different priors and compare results - the

results for one prior look very different from the rest, then that prior might be stronger than

we had intended.

In general, common uninformative priors for parameters of this model include:

• Set bµ = 0 and Bµ to be very large, e.g. Bµ = 1, 000, which gives a prior for µh that is

weakly centered about 0.

• Set a0 = 1 and b0 = 1, which gives a prior for ϕ that is weakly centered about 0.

– We need to be pretty careful with this prior distribution, because uninformative

priors suggest that the state process is as likely to be white noise as it is to be

non-stationary. This can be both implausible and computationally troublesome,

which is why some software uses more informative priors for ϕ by default.

• Set Bσ2
w
= 1, which gives a prior for σ2

w that is weakly centered about 1.

Whenever you use any software, you should check what the defaults are!

Appendix

Expectation-Maximization (EM) Maximum Marginal Likelihood for the Stochas-

tic Volatility Model One other way we can compute maximum likelihood estimates of

σ2
w, ϕ, and µh is to use the expectation-maximization (EM) algorithm, which is an algorithm

for maximizing a function that corresponds to an integral over some latent variables, which

in this case are the latent states ht. The EM algorithm allows us to maximize the marginal

likelihood in (4) by maximizing E [log (p (y|h) p (h|µh, ϕ, σ
2
w)) |y] using an iterative proce-

dure. It isn’t immediately obvious how this helps us, but we will get a sense by working
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simplifying the conditional expectation of the joint log-likelihood:

E
[
log
(
p (y|h) p

(
h|µh, ϕ, σ

2
w

))
|y
]
=

E

[
log

(
p (y1|h1) p

(
h1|µh, ϕ, σ

2
w

) n∏
t=2

p (yt|ht, ) p
(
ht|ht−1, ϕ, σ

2
w

))
|y

]
=

K − 1

2
log
(
1− ϕ2

)
− n

2
log
(
σ2
w

)
+

E

[
−1

2

(
n∑

t=1

ht +
y2t

exp {ht}

)
− 1− ϕ2

2σ2
w

(h1 − µh)
2 − 1

2σ2
w

(
n∑

t=2

((ht − µh)− ϕ (ht−1 − µh))
2

)
|y

]
=

K − 1

2
log
(
1− ϕ2

)
− n

2
log
(
σ2
w

)
−

n
(
1− ϕ2

)
µ2
h

2σ2
w

+ (6)

− 1

2

(
n∑

t=1

E [ht|y] + y2tE [exp {−ht} |y]

)
+

− 1− ϕ2

2σ2
w

(
E
[
h2
1|y
]
− µhE [h1|y]

)
+

− 1

2σ2
w

(
n∑

t=2

(
E
[
h2
t |y
]
+ ϕ2E

[
h2
t−1|y

])
+

− 1

2σ2
w

(
n∑

t=2

(2µh (ϕ− 1)ht + 2ϕµh (1− ϕ)E [ht−1|y]− 2ϕE [htht−1|y])

)

where x1 = µ. where K is a constant that doesn’t depend on the data y, or the latent states

h, or the parameters ϕ, σ2
w, and µh. The problem we have is that (6) depends on conditional

expectations that we don’t have a closed form way to compute, even when the parameters

are ϕ, σ2
w, and µh fixed. This means that we don’t have a speedy way to do the E-step of the

EM-algorithm. There is a vast literature on approximating the E-step, but EM algorithms

that use an approximate E-step tend to be very slow and may converge especially poorly so

we won’t consider them.
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