
Spectral Analysis/The Spectral Domain

September 3, 2024

The material in this set of notes is based on S&S Example 2.8 and S&S Chapter 4.

Theory

The general idea is that there’s another nice way to write out models for time series data. So

far, we have always talked about modeling each element of a time series as a linear function

of past values and/or past errors. Instead, we might think of each element of a time series

as a noisy realization of several cyclical processes:

yt =
r∑

k=1

vkcos (2πωkt) + uksin (2πωkt) , vk, uk
i.i.d.∼ N

(
0, σ2

k

)
. (1)

There is a very useful theorem called the spectral representation theorem that states

that if yt is a stationary process, we can find a spectral representation for yt, i.e. we can

find r underlying cyclical processes that vary at rates denoted by ω1, . . . , ωr and account

for different amounts of the variability σ2
1, . . . , σ

2
r such that (6) holds approximately. Note

that it is possible r could be very big! This means that all of our stationary ARMA(p, q)

models can approximately be written as in (6) certain choices of r, ω1, . . . , ωr, and σ
2
1, . . . , σ

2
r ,

although there may not be nice expressions for r, ω1, . . . , ωr, and σ
2
1, . . . , σ

2
r in terms of our

ARMA(p, q) parameters µy, ϕ1, . . . , ϕp, θ1, . . . , θq, and σ
2
w.

A nice thing about the spectral representation of the time series is that it allows
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straightforward computation of γy (h) using some trigonometric identities. When h = 0, we

have:

γy (0) =E
[
y2t
]

=E

( r∑
k=1

vkcos (2πωkt) + uksin (2πωkt)

)2


=E

[
r∑

k=1

(vkcos (2πωkt) + uksin (2πωkt))
2

]
+

E

[
r∑

k=1

r∑
l=1,l ̸=k

(vkcos (2πωkt) + uksin (2πωkt)) (vlcos (2πωlt) + ulsin (2πωlt))

]

=
r∑

k=1

E
[
v2k
]
cos2 (2πωkt) + E

[
u2k
]
sin2 (2πωkt) E [vkuk] = 0, E [vkvl] = E [ukul] = 0, k ̸= l

=
r∑

k=1

σ2
k. sin2 (a) + cos2 (a) = 1

More generally, for any h > 0 we can write

γy (h) =
r∑

k=1

σ2
kcos (2πωkh) . (2)

Independence of v1, . . . , vk, u1, . . . , uk is the key to straightforward computation of γy (h), and

it is also useful interpretationally as it allows us to decompose a time series with possibly

correlated elements into a set of independent random variables.

The actual spectral representation theorem is quite technical, and I won’t expect

you to have a deep understanding of it or ask you to prove it but I will show it and try

to explain how it leads us to conclude that any stationary process can approximately be

represented by (6) for certain choices of ω1, . . . , ωr and σ2
1, . . . , σ

2
r . First, we need to define

the spectral distribution function F (w).

The spectral distribution function F (w) is closely related to the autocovariance function,

γy (h). It is a monotone non-decreasing function defined on the domain [−0.5, 0.5] that
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satisfies:

γy (h) =

∫ 0.5

−0.5

exp {2πiωh} dF (ω) . (3)

By virtue of being monotone non-decreasing and satisfying (3), we can conclude that F (ω)

must have various specific properties - we won’t go through them all here, but you can

find them in Appendix C of S&S. The important thing to understand is that the spectral

distribution function F (ω) contains the same information as the autocovariance function

γy (h), in the way that the characteristic function of a random variable contains the same

information as a random variable’s probability density function.

The spectral representation theorem states that if yt is a mean-zero stationary pro-

cess with spectral distribution function F (ω) that satisfies (3), then there exists a complex-

valued stochastic process z (ω) on the interval ω ∈ [−0.5, 0.5] having stationary uncorrelated

increments dz (ω) such that

yt =

∫ 0.5

−0.5

exp {2πitω} dz (ω) , (4)

where for −0.5 ≤ ω1 ≤ ω2 ≤ 0.5, V [z (ω2)− z (ω1)] = F (ω2)− F (ω1).

Letting ω1, . . . , ωm be an increasing sequence of values from −0.5 to 0.5 and noting that

if z (ω) is stationary, then (4) is equivalent to:

yt = limr→∞

r∑
k=1

exp {2πitωk} yk, (5)

where the increments yk = z (ωk)− z (ωk−1) are independent, stationary random variables.

We can go from (5) to (6) by applying a bunch of trigonometric identities, and by as-

suming that the infinite sum in (5) can be reasonably well represented by a finite sum. The

technical details are very involved and well beyond the scope of this class, and I have not

found a resource that gives a very clear big picture explanation.
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Going back to

yt =
r∑

k=1

vkcos (2πωkt) + uksin (2πωkt) , vk, uk
i.i.d.∼ N

(
0, σ2

k

)
. (6)

The variances σ2
1, . . . , σ

2
r are specific values of the spectral density function of x, which

is defined as follows. When yt is stationary and has a summable autocovariance function

γy (h), i.e.

∞∑
h=−∞

|γy (h)| <∞,

then it can be written as

γy (h) =

∫ 0.5

−0.5

exp {2πiωh} f (ω) dω,

where h = . . . ,−2,−1, 0, 1, 2, . . . . This is the inverse transform of the spectral density,

which in turn is given by

f (ω) =
∞∑

h=−∞

γ (h) exp {−2πiωh} ,

where −0.5 ≤ ω ≤ 0.5. If you are familiar with the Fourier transform, you might recognize

that the spectral density f (x) as the Fourier transform of the autocovariance function

γy (h). If we refer back to our simple spectral representation for yt given by (6), each σ2
k

corresponds to the spectral density function evaluated at frequency ωk, σ
2
k = f (ωk).

The spectral density of a stationary process yt with summable autocovariances behaves a

lot like a probability density function. It corresponds to the derivative of the spectral distri-

bution function F (ω) and is always nonnegative. However, just as the spectral distribution

function is unlike a cumulative distribution function in that F (0.5) = γy (0) instead of 1,

the spectral density function does not always integrate to 1 but rather integrates to γy (0).

The spectral density also has two other nice properties:

• It is symmetric about 0, i.e. f (ω) = f (−ω).
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• It has period one 1, i.e. f (ω + 1) = f (ω).

As a result, we can always just examine f (ω) on the interval [0, 0.5] without any loss of

information - once we know the values of f (ω) for 0 ≤ ω ≤ 0.5, we know the values of f (ω)

for −0.5 ≤ ω ≤ 0 and f (ωk + ωj), where −0.5 ≤ ωk ≤ 0.5 and ωj is any integer.

In general, it can be challenging to derive spectral density f (ω) that corresponds to a

specific time series model. Although any ARMA(p, q) model has a corresponding spectral

density f (ω), it is not generally a nice function of the ARMA(p, q) parameters ϕ1, . . . , ϕp,

θ1, . . . , θq, and σ2
w. However under the white noise model, i.e. if yt = wt where wt

i.i.d.∼

N (0, σ2
w), then f (ω) = σ2

w for all ω. This follows from the relationship between the spectral

density and the autocorrelation function.

We can think of the values of the function f (ω) as the unknown parameters that describe

the behavior of a time series yt when we are working in the spectral domain, whereas the

values of the function γy (h) are the unknown parameters that describe the behavior of a

time series yt when we are working in the time domain.

Estimation

In practice, we will be interested in estimating the spectral density function f (ω). It is

easiest to think about estimating the spectral density as estimating σ2
1, . . . , σ

2
r based on the

model (6), but where the number of cyclical components r is unknown. This is a little odd

- it is easiest to write down the spectral representation as an approximate finite sum as

in (6), in which case the spectral density function is just a sequence of r values σ2
1, . . . , σ

2
r

corresponding to frequencies ω1, . . . , ωr. However, we will tend to think of spectral density

function f (ω) as a continuous function of ω that is based on the exact spectral representation

given by (4).

In practice, what we’ll do is use as many cyclical components as possible. Note that

(6) looks like a regression problem where y is the response, cos (2πωkt) and sin (2πωkt)
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are the covariates with t = (1, . . . , n), vk and uk are the regression coefficients with σ2
k =

E [(v2k + u2k) /2]. If we want to include as many cyclical components as possible and have n

observed response values, then we’ll want to use a design matrix with exactly n covariates -

the most we can have while still having a full rank design matrix:

yt =

 a0 +
∑(n−1)/2

k=1 akcos (2π (k/n) t) + bksin (2π (k/n) t) if n is odd

a0 +
(∑n/2−1

k=1 akcos (2π (k/n) t) + bksin (2π (k/n) t)
)
+ an/2cos (πt) if n is even

(7)

There is no error in (7) - (7) corresponds to a saturated regression model. If we

compute all of the regression coefficients aj and bj using least squares, we can perfectly

recover y. This is because we have the same number of covariates as observations, and the

intercept, sine, and cosine terms in (7) are not linearly dependent. For convenience, we’ll

introduce some notation for the design matrix that corresponds to (7). The n × n design

matrix Z has an intercept as the first column z1 = 1n and remaining columns given by:

z2(k−1)+2 = cos (2π (k/n) t)

z2(k−1)+3 = sin (2π (k/n) t)

This is a special design matrix, insofar as its columns are nearly orthogonal, i.e. z′
jzk ≈ 0

if j ̸= k. This makes computation especially easy because we can compute the values aj

and bj that satisfy (7) either by regressing y on all of the columns of Z simultanously, or by

regressing out one column of Z at a time. We can think of each k/n as a frequency. The

corresponding squared coefficients at each frequency

P (k/n) =

 a2k k = 0 or k = n/2

a2k + b2k otherwise
(8)

is referred to as the scaled periodogram.

The scaled periodogram is almost an estimator of the values of the spectral density
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function evaluated at the frequencies k/n, but off by a constant. If we are just interested in

the shape of the spectral density function, the scaled periodogram will suffice. This may often

be the case in practice, because we will tend to examine to be looking for evidence of very

large values of the spectral density function f (ω), which indicate that certain frequencies

are especially relevant for explaining variation of a certain time series.

If we want to actually try to estimate the values of the spectral density function, we need

to rescale the scaled periodogram. We define the periodogram I (k/n) =
(
n
4

)
P (k/n)

to be an estimator of the values of the spectral density function evaluated at the frequencies

k/n.

Conveniently, the periodogram has a close relationship with the discrete Fourier trans-

form. The discrete Fourier transform of a vector y finds the values d (1/n),. . . , d ((n− 1) /n)

which satisfy:

yt =
1√
n

n−1∑
t=1

d (k/n) exp {2πi (k/n) t} ,

where the frequencies k/n are called the Fourier or fundamental frequencies. The peri-

odogram can be computed from d (1/n), . . . , d ((n− 1) /n) according to

I (k/n) = |d (k/n)|2 .

This further enhances our ability to compute the periodogram, because the discrete

Fourier transform can be obtained very quickly using the fast Fourier transform algorithm

(FFT) if n is a highly composite integer, i.e. if n has many factors. In practice, n may not

be a highly composite integer, in which case the smallest highly composite integer ñ that

satisfies n < ñ is identified, and a new synthetic length ñ time series ỹ can be obtained by

appending n′ − n zeros to the original length-n time series, ỹ = (y,0n′−n). Some functions

for computing the periodogram from the FFT will append extra zeroes by default, so always

check to see what was done by counting the number of frequencies that are returned and

comparing them to what you would expect a periodogram from a length-n time series to
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have!

Unfortunately, the periodogram does not provide a more precise estimator of the spectral

density as we observe a longer time series! Intuitively, this makes some sense because can

think of our estimate of the periodogram as the result of a regression of n response values

on n covariates - as we get more data, we are adding more terms to the model we are fitting.

We’re going to need to introduce some new notation to describe how the the asymptotic

distribution of elements of the periodogram as n → ∞. Letting m = n/2 if n is even and

m = (n− 1) /2 if n is odd, as n → ∞, we can think of our periodogram as estimating

values of the spectral density function at a finer resolution {0, 1/n, . . . ,m/n} on the interval

[0, 1]. Let s be a subset of L consecutive frequencies from the m + 1 frequency values

{0, 1/n, . . . ,m/n}. As n → ∞ and L stays fixed, all of the entries of s will converge to a

constant value s, i.e. s → s1L.

If a time series y has a linear process representation with yt =
∑∞

j=−∞ ψjwt−j, where∑∞
j=−∞ |ψj| < ∞, wt

i.i.d.∼ N (0, σ2
w), and

∑∞
h=−∞ |h| |γy (h)| < ∞, then for any collec-

tion s of L frequencies that converge to s1L as n→ ∞ with f (s) > 0,
2I(s1)
f(s)

...

2I(sL)
f(s)

 d→


c1
...

cL

 , (9)

where c1, . . . , cL
i.i.d.∼ χ2

2 as n→ ∞.

Approximate level-α confidence intervals can be obtained in the usual way. Note that (9)

does not indicate that the limiting distribution has decreasing variance as n → ∞ - the

periodogram is not getting less noisy! There are two main approaches to addressing this,

smoothing the periodogram and parameteric estimation of the periodogram.

• Smoothing the periodogram. If the spectral density is a smooth function of ω, we

can share information across consecutive periodogram values. Again, let s be a subset

of L consecutive frequencies from the m + 1 frequency values {0, 1/n, . . . ,m/n} that
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converges to a constant s as n → ∞. We can naively construct a lower variance

estimate of the spectral density at s, f̄ (s) = 1
L

∑L
i=1 I (si).

If the conditions that ensure (9) hold, as n→ ∞,

2Lf̄ (s)

f (s)

d→ χ2
2L. (10)

In practice, (10) will apply as long as we choose L to be small relative to n and as long

as f (ω) is not varying too much on the interval (s1, . . . , sL). We will often quantify

the amount of smoothing imposed by referring to the bandwidth B = L/n, which gives

the lengths of the intervals chosen for smoothing. Larger bandwidths correspond to

more aggressive smoothing.

A more sophisticated approach might not weight elements of s the same in the spectral

density estimate. For weights h1, . . . , hL > 0 which are symmetric about h(L−1)/2 with

h(L−1)/2−k = h(L−1)/2+k and
∑L

i=1 hi = 1, we can construct another estimate of the

spectral density at s, f̂ (s) =
∑L

i=1 hiI (si). The choice of weights h1, . . . , hL are

determined according to a kernel function.

If the conditions that ensure (9) hold and
∑L

i=1 h
2
i → 0 as n → ∞ and L → ∞

but L/n → 0, then for any collection s of L frequencies that converge to s1L as

n→ ∞ with f (s) > 0, then as n→ ∞,

2Lhf̂ (s)

f (s)

d→ χ2
2Lh

, (11)

where Lh =
(∑L

i=1 h
2
i

)−1

.

Again, (11) will apply in practice as long as we choose L to be small relative to n

and as long as f (ω) is not varying too much on the interval (s1, . . . , sL). To quantify

the amount of smoothing imposed, we generalize the definition of bandwith to be

B = Lh/n.
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A note of caution - how much smoothing is imposed matters a lot! Smoothing too

much can make it impossible to observe evidence of peaks of the spectral density, and

smoothing too little can make it easy to mistake noise for peaks of the spectral density.

There are principled approaches to deciding how to smooth and how much, but they

are beyond the scope of this class.

• Parametric estimation of the periodogram. This is a pretty simple idea - we first find

the AIC minimizing AR(p) model for a time series n, and then examine the spectral

density assuming that the estimated AR(p) parameters are the truth. The spectral

density is not a simple function of the AR(p) parameters, but the spectral density

estimate constructed by plugging the AR(p) parameter estimates into the spectral

density function of an AR(p) model does improve as n → ∞ without additional

smoothing.

– This is justifiable in practice thanks to a very powerful theorem that tells us

that if f (ω) is the spectral density of a stationary process, we can find a causal

AR(p) process with spectral density g (ω) that approximates f (ω) arbitrarily

well! However, we might need to choose a value of p that is prohibitively large to

get a good enough approximation of the spectral density from an AR(p) model

in practice.

– Unfortunately, the existing theory that gives a limiting distribution of the a spec-

tral density estimate obtained in this way relies on assumptions that may be too

strong, so the bootstrap is often used to get confidence intervals for the parametric

estimate of the periodogram in practice.
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